Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Adicionar filtros








Intervalo de ano
1.
The Korean Journal of Nutrition ; : 16-28, 2011.
Artigo em Coreano | WPRIM | ID: wpr-646483

RESUMO

Oxidative stress leads to the induction of cellular oxidative damage, which may cause adverse modifications of DNA, proteins, and lipids. The production of reactive species during oxidative stress contributes to the pathogenesis of many diseases. Antioxidant defenses can neutralize reactive oxygen species and protect against oxidative damage. The aim of this study was to assess the antioxidant status and the degree of DNA damage in Korean young adults using glutathione s-transferase (GST) polymorphisms. The GSTM1 and GSTT1 genotypes were characterized in 245 healthy young adults by smoking status, and their oxidative DNA damage in lymphocytes and antioxidant status were assessed by GST genotype. General characteristics were investigated by simple questionnaire. From the blood of the subjects, GST genotypes; degree of DNA damage in lymphocytes; the erythrocyte activities of superoxide dismutase, catalase, and glutathione peroxidase; plasma concentrations of total peroxyl radical-trapping potential (TRAP), vitamin C, alpha- and gamma-tocopherol, alpha- and beta-carotene and cryptoxanthin, as well as plasma lipid profiles, conjugated diene (CD), GOT, and GPT were analyzed. Of the 245 subjects studied, 23.2% were GSTM1 wild genotypes and 33.4% were GSTT1 wild genotype. No difference in erythrocyte activities of superoxide dismutase, catalase, or glutathione peroxidase, and the plasma TRAP level, CD, GOT, and GPT levels were observed between smokers and non-smokers categorized by GSTM1 or GSTT1 genotype. Plasma levels of alpha- and gamma-tocopherol increased significantly in smokers with the GSTT1 wild genotype (p < 0.05); however, plasma level of alpha-carotene decreased significantly in non-smokers with the GSTM1 wild genotype (p < 0.05). DNA damage assessed by the Comet assay was significantly higher in non-smokers with the GSTM1 null genotype; whereas DNA damage was significantly lower in non-smokers with the GSTT1 null genotype. Total cholesterol and LDL cholesterol levels were significantly higher in non-smokers with the GSTT1 null genotype than those with the GSTT1 wild genotype (p < 0.05). In conclusion, the GSTM1 null genotype or the GSTT1 wild genotype in non-smokers aggravated their antioxidant status through DNA damage of lymphocytes; however, the GSTT1 wild type in non-smokers had normal plasma total cholesterol and LDL-cholesterol levels. This finding confirms that GST polymorphisms could be an important determinant of antioxidant status and plasma lipid profiles in non-smoking young adults. Further study is necessary to clarify the antioxidant status and/or lipid profiles of smokers with the GST polymorphism and to conduct a study with significantly more subjects.


Assuntos
Humanos , Adulto Jovem , Ácido Ascórbico , beta Caroteno , Carotenoides , Catalase , Colesterol , LDL-Colesterol , Ensaio Cometa , DNA , Dano ao DNA , Eritrócitos , gama-Tocoferol , Genótipo , Glutationa , Glutationa Peroxidase , Glutationa Transferase , Linfócitos , Estresse Oxidativo , Plasma , Proteínas , Inquéritos e Questionários , Espécies Reativas de Oxigênio , Fumaça , Fumar , Superóxido Dismutase , Xantofilas
2.
The Korean Journal of Nutrition ; : 570-577, 2010.
Artigo em Coreano | WPRIM | ID: wpr-655171

RESUMO

Water gets magnetically charged when it is contacted with a magnet. Although magnetic water products have been promoted since the 1930's, they have received very little recognition due to questionable effectiveness. Diethylnitrosamine (DEN) is a widely occurring nitrosamine that is one of the most important environmental carcinogens primarily inducing tumors of liver. In this study, the effect of magnetized water supplementation on lymphocyte DNA damage in ICR mice treated with DEN was evaluated using the Comet assay. Mice were divided into 3 groups: control, DEN, and DEN + magnetized water group. Fifteen mice were maintained in each group for the entire experimental period of 6, 12 and 18 weeks. Five mice in each group were sacrificed at 6, 12, and 18th weeks, followed by the Comet assay using the blood obtained from heart puncture of the mice. The level of lymphocyte DNA damage reflected by tail moment and other DNA damage indices of tail DNA (%) or tail length of the magnetized water group were significantly decreased after the 6th, 12th and 18th weeks of supplementation compared with the positive control, the DEN group. The relative DNA damage of the magnetized water groups compared to the DEN control group after 6th, 12th, and 18th weeks of supplementation were 42.2%, 40.8%, and 32.9% for DNA in tail, 31.2%, 32.6%, and 21.3% for tail length, and 33.8%, 33.8%, and 24.6% for tail moment, respectively. This is the first report demonstrating that magnetized water may be involved in the lowering effect of the DNA damage in DEN-treated ICR mice. This result suggests that the magnetized water might have minimized the DNA damage by improving the antioxidant status of the mice. However, further studies are needed to characterize the condition of the magnetization and examine the long-term effect of the water product.


Assuntos
Animais , Camundongos , Carcinógenos Ambientais , Ensaio Cometa , Dietilnitrosamina , DNA , Dano ao DNA , Coração , Fígado , Linfócitos , Magnetismo , Imãs , Camundongos Endogâmicos ICR , Punções , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA