Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Adicionar filtros








Intervalo de ano
1.
Experimental & Molecular Medicine ; : 611-617, 2009.
Artigo em Inglês | WPRIM | ID: wpr-10785

RESUMO

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease caused by the degeneration of motor neurons. Mutations in Cu/Zn superoxide dismutase (SOD1), including G93A, were reportedly linked to familial ALS. SOD1 is a key antioxidant enzyme, and is also one of the major targets for oxidative damage in the brains of patients suffering from Alzheimer's disease (AD). Several lines of evidence suggest that intracellular amyloid beta (Abeta) is associated with the pathogenesis of AD. In this report we demonstrate that intracellular Abeta directly interacts with SOD1, and that this interaction decreases the enzymatic activity of the enzyme. We observed Abeta-SOD1 aggregates in the perinuclear region of H4 cells, and mapped the SOD1 binding region to Abeta amino acids 26-42. Interestingly, intracellular Abeta binds to the SOD1 G93A mutant with greater affinity than to wild-type SOD1. This resulted in considerably less mutant enzymatic activity. Our study implicates a potential role for Abeta in the development of ALS by interacting with the SOD1 G93A mutant.


Assuntos
Humanos , Sequência de Aminoácidos , Peptídeos beta-Amiloides/química , Esclerose Lateral Amiotrófica/enzimologia , Apoptose , Linhagem Celular , Linhagem Celular Tumoral , Dados de Sequência Molecular , Mutação Puntual , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Superóxido Dismutase/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA