Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Adicionar filtros








Intervalo de ano
1.
Journal of Veterinary Science ; : 187-194, 2015.
Artigo em Inglês | WPRIM | ID: wpr-86400

RESUMO

Salmonella enterica Gallinarum (SG) causes fowl typhoid (FT), a septicemic disease in avian species. We constructed deletion mutants lacking the stress sigma factor RpoS, the nitric oxide (NO)-detoxifying flavohemoglobin Hmp, and the SsrA/SsrB regulator to confirm the functions of these factors in SG. All gene products were fully functional in wild-type (WT) SG whereas mutants harboring single mutations or a combination of rpoS, hmp, and ssrAB mutations showed hypersusceptibility to H2O2, loss of NO metabolism, and absence of Salmonella pathogenicity island (SPI)-2 expression, respectively. A triple-deletion mutant, SGDelta3 (SGDeltarpoSDeltahmpDeltassrAB), was evaluated for attenuated virulence and protection efficacy in two-week-old Lohmann layer chickens. The SGDelta3 mutant did not cause any mortality after inoculation with either 1 x 10(6) or 1 x 10(8) colony-forming units (CFUs) of bacteria. Significantly lower numbers of salmonellae were recovered from the liver and spleen of chickens inoculated with the SGDelta3 mutant compared to chickens inoculated with WT SG. Vaccination with the SGDelta3 mutant conferred complete protection against challenge with virulent SG on the chickens comparable to the group vaccinated with a conventional vaccine strain, SG9R. Overall, these results indicate that SGDelta3 could be a promising candidate for a live Salmonella vaccine against FT.


Assuntos
Animais , Feminino , Administração Oral , Proteínas de Bactérias/genética , Galinhas , Doenças das Aves Domésticas/imunologia , Salmonelose Animal/imunologia , Vacinas contra Salmonella/administração & dosagem , Salmonella enterica/imunologia , Vacinas Atenuadas/administração & dosagem , Virulência
2.
International Journal of Oral Biology ; : 217-221, 2015.
Artigo em Coreano | WPRIM | ID: wpr-42180

RESUMO

Cariogenic Streptococcus mutans encounters a variety of host defense factors produced in oral cavity. Nitric oxide (NO) and NO-mediated reactive nitrogen species are potential antimicrobials of innate immunity that can threaten the fitness of S. mutans in their ecological niches. Streptococcal strategies to detoxify cytotoxic NO, which allow S. mutans to persist in caries or other environments of the oral cavity, remain unknown. In this study, we directly measured NO consumption rates of S. mutans isolated in Korea. Surprisingly, all S. mutans strains were unable to consume exogenous NO efficiently, while an intracellular parasite Salmonella enterica serovar Typhimurium expressing the NO-metabolizing enzyme flavohemoglobin consumed most of the NO. This result suggested that S. mutans has alternative detoxification systems for tolerating NO-induced nitrosative stresses.


Assuntos
Imunidade Inata , Coreia (Geográfico) , Boca , Óxido Nítrico , Parasitos , Espécies Reativas de Nitrogênio , Salmonella enterica , Streptococcus mutans , Streptococcus
3.
International Journal of Oral Biology ; : 207-213, 2014.
Artigo em Coreano | WPRIM | ID: wpr-149978

RESUMO

Antimicrobial actions of reactive oxygen/nitrogen species (ROS/RNS) derived from products of NADPH oxidase and inducible nitric oxide (NO) synthase in host phagocytes inactivate various bacterial macromolecules. To cope with these cytotoxic radicals, pathogenic bacteria have evolved to conserve systems necessary for detoxifying ROS/RNS and repairing damages caused by their actions. In response to these stresses, bacteria also induce expression of molecular chaperones to aid in ameliorating protein misfolding. In this study, we explored the function of a newly identified chaperone Spy, that is localized exclusively in the periplasm when bacteria exposed to conditions causing spheroplast formation, in the resistance of Salmonella Typhimurium to ROS/RNS. A spy deletion mutant was constructed in S. Typhimurium by a PCR-mediated method of one-step gene inactivation with lambda Red recombinase, and subjected to ROS/RNS stresses. The spy mutant Salmonella showed a modest decrease in growth rate in NO-producing cultures, and no detectable difference of growth rate in H2O2 containing cultures, compared with that of wild type Salmonella. Quantitative RT-PCR analysis showed that spy mRNA levels were similar regardless of both stresses, but were increased considerably in Salmonella mutants lacking the flavohemoglobin Hmp, which are incapable of NO detoxification, and lacking an alternative sigma factor RpoS, conferring hypersusceptibility to H2O2. Results demonstrate that Spy expression can be induced under extreme conditions of both stresses, and suggest that the protein may have supportive roles in maintaining proteostasis in the periplasm where various chaperones may act in concert with Spy, thereby protecting bacteria against toxicities of ROS/RNS.


Assuntos
Bactérias , Inativação Gênica , Chaperonas Moleculares , NADPH Oxidases , Óxido Nítrico , Periplasma , Fagócitos , Espécies Reativas de Nitrogênio , Espécies Reativas de Oxigênio , Recombinases , RNA Mensageiro , Salmonella typhimurium , Salmonella , Fator sigma , Esferoplastos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA