Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Adicionar filtros








Intervalo de ano
1.
Experimental Neurobiology ; : 123-129, 2011.
Artigo em Inglês | WPRIM | ID: wpr-7985

RESUMO

Neural tissue is arisen from presumptive ectoderm via inhibition of bone morphogenetic protein (BMP) signaling during Xenopus early development. Previous studies demonstrate that ectopic expression of dominant negative BMP4 receptor (DNBR) produces neural tissue in animal cap explants (AC) and also increases the expression level of various genes involved in neurogenesis. To investigate detail mechanism of neurogenesis in transcriptional level, we analyzed RNAs increased by DNBR using total RNA sequencing analysis and identified several candidate genes. Among them, xCITED2 (Xenopus CBP/p300-interacting transcription activator) was induced 4.6 fold by DNBR and preferentially expressed in neural tissues at tadpole stage. Ectopic expression of xCITED2 induced anterior neural genes without mesoderm induction and reduced BMP downstream genes, an eye specific marker and posterior neural marker. Taken together, these results suggest that xCITED2 may have a role in the differentiation of anterior neural tissue during Xenopus early development.


Assuntos
Animais , Proteínas Morfogenéticas Ósseas , Ectoderma , Estruturas Embrionárias , Olho , Larva , Mesoderma , Neurogênese , RNA , Análise de Sequência de RNA , Xenopus
2.
Experimental Neurobiology ; : 83-89, 2010.
Artigo em Inglês | WPRIM | ID: wpr-162261

RESUMO

Nitric oxide (NO) regulates proliferation, differentiation and survival of neurons. Although NO is reported to involve in NGF-induced differentiation of PC12 cells, the role of NO has not been characterized in primary neuron cells. Therefore, we investigated the role of NO in neuronal differentiation of primary cortical neuron cells. Primary cortical neuron cells were prepared from rat embryos of embryonic day 18 and treated with NMMA (NOS inhibitor) or PTIO (NO scavenger). Neurite outgrowth of neuron cells was counted and the mRNA levels of p21, p27, c-jun and c-myc were measured by RT-PCR. Neurite outgrowth of primary cortical neuron cells was inhibited a little by NOS inhibitor and completely by NO scavenger. The mRNA levels of p21 and p27, differentiation-induced growth arrest genes were increased during differentiation, but they were decreased by NOS inhibitor or NO scavenger. On the other hand, the level of c-jun mRNA was not changed and the level of c-myc mRNA was increased during differentiation differently from previously reported. The levels of these mRNA were reversed in NOS inhibitor- or NO scavenger-treated cells. The level of nNOS protein was not changed but NOS activity was inhibited largely by NOS inhibitor or NO scavenger. These results suggest that NO is an essential mediator for neuronal differentiation of primary cortical neuron cells.


Assuntos
Animais , Ratos , Butiratos , Óxidos N-Cíclicos , Estruturas Embrionárias , Mãos , Imidazóis , Neuritos , Neurônios , Óxido Nítrico , Óxido Nítrico Sintase , Células PC12 , RNA Mensageiro
3.
Experimental & Molecular Medicine ; : 335-344, 2010.
Artigo em Inglês | WPRIM | ID: wpr-94340

RESUMO

Rat pheochromocytoma (PC12) cells have been used to investigate neurite outgrowth. Nerve growth factor (NGF) has been well known to induce neurite outgrowth from PC12 cells. RhoA belongs to Ras-related small GTP-binding proteins, which regulate a variety of cellular processes, including cell morphology alteration, actin dynamics, and cell migration. NGF suppressed GTP-RhoA levels after 12 h in PC12 cells and was consistently required for a long time to induce neurite outgrowth. Constitutively active (CA)-RhoA suppressed neurite outgrowth from PC12 cells in response to NGF, whereas dominant-negative (DN)-RhoA stimulated it, suggesting that RhoA inactivation is essential for neurite outgrowth. Here, we investigated the mechanism of RhoA inactivation. DN-p190RhoGAP abrogated neurite outgrowth, whereas wild-type (WT)-p190RhoGAP and WT-Src synergistically stimulated it along with accelerating RhoA inactivation, suggesting that p190RhoGAP, which can be activated by Src, is a major component in inhibiting RhoA in response to NGF in PC12 cells. Contrary to RhoA, Rap1 was activated by NGF, and DN-Rap1 suppressed neurite outgrowth, suggesting that Rap1 is also essential for neurite outgrowth. RhoA was co-immunoprecipitated with Rap1, suggesting that Rap1 interacts with RhoA. Furthermore, a DN-Rap-dependent RhoGAP (ARAP3) prevented RhoA inactivation, abolishing neurite formation from PC12 cells in response to NGF. These results suggest that NGF activates Rap1, which, in turn, up-regulates ARAP3 leading to RhoA inactivation and neurite outgrowth from PC12 cells. Taken together, p190RhoGAP and ARAP3 seem to be two main factors inhibiting RhoA activity during neurite outgrowth in PC12 cells in response to NGF.

4.
Laboratory Animal Research ; : 109-115, 2010.
Artigo em Inglês | WPRIM | ID: wpr-153253

RESUMO

Neurogenesis is the process that develops neuroectoderm from ectoderm. Bone morphogenetic protein (BMP) inhibition in ectodermal cells is necessary and sufficient for neurogenesis in Xenopus embryos. To isolate genes involved in early neurogenesis, Xenous Affymetrix gene chips representing 14,400 genes were analyzed in early stage of neuroectodermal cells that were produced by inhibition of BMP signaling with overexpression of a dominant-negative receptor. We identified 265 candidate genes including 107 ESTs which were newly expressed during the early neurogenesis by blocking BMP signaling. The candidates of 10 ESTs were selected and examined for upregulation in neuroectoderm. Five EST genes were confirmed to be upregulated in neuroectoderm and examined for time-dependent expression patterns in intact embryos. Two EST genes were cloned and identified as a homology of CYP26c (Xl.1946.1.A1_at) and Kielin containing VWC domain (Xl.15853.1.A1_at). One of them, CYP26c, was further characterized for its transcriptional regulation and role of anterior-posterior patterning during neurogenesis. Taken together, we analyzed and characterized genes expressed in early neurogenesis. The results suggest that neurogenesis by inhibition of BMP provides useful system to isolate genes involved in early events of neurogenesis during early vertebrate embryogenesis.


Assuntos
Feminino , Gravidez , Proteínas Morfogenéticas Ósseas , Células Clonais , DNA Complementar , Ectoderma , Desenvolvimento Embrionário , Estruturas Embrionárias , Etiquetas de Sequências Expressas , Placa Neural , Neurogênese , Análise de Sequência com Séries de Oligonucleotídeos , Regulação para Cima , Vertebrados , Xenopus
5.
Nutrition Research and Practice ; : 105-112, 2007.
Artigo em Inglês | WPRIM | ID: wpr-189519

RESUMO

Ascorbic acid has been reported to extend replicative life span of human embryonic fibroblast (HEF). Since the detailed molecular mechanism of this phenomenon has not been investigated, we attempted to elucidate. Continuous treatment of HEF cells with ascorbic acid (at 200 micrometer) from 40 population doubling (PD) increased maximum PD numbers by 18% and lowered SA-beta-gal positive staining, an aging marker, by 2.3 folds, indicating that ascorbic acid extends replicative life span of HEF cells. Ascorbic acid treatment lowered DCFH by about 7 folds and Rho123 by about 70%, suggesting that ascorbic acid dramatically decreased ROS formation. Ascorbic acid also increased aconitase activity, a marker of mitochondrial aging, by 41%, indicating that ascorbic acid treatment restores age-related decline of mitochondrial function. Cell cycle analysis by flow cytometry revealed that ascorbic acid treatment decreased G1 population up to 12%. Further western blot analysis showed that ascorbic acid treatment decreased levels of p53, phospho-p53 at ser 15, and p21, indicating that ascorbic acid relieved senescence-related G1 arrest. Analysis of AP (apurinic/apyrimidinic) sites showed that ascorbic acid treatment decreased AP site formation by 35%. We also tested the effect of hydrogen peroxide treatment, as an additional oxidative stress. Continuous treatment of 20 micrometer of hydrogen peroxide from PD 40 of HEF cells resulted in premature senescence due to increased ROS level, and increased AP sites. Taken together, the results suggest that ascorbic acid extends replicative life span of HEF cells by reducing mitochondrial and DNA damages through lowering cellular ROS.


Assuntos
Humanos , Aconitato Hidratase , Envelhecimento , Ácido Ascórbico , Western Blotting , Ciclo Celular , Dano ao DNA , DNA , Fibroblastos , Citometria de Fluxo , Peróxido de Hidrogênio , Estresse Oxidativo , Espécies Reativas de Oxigênio
6.
Experimental & Molecular Medicine ; : 14-26, 2007.
Artigo em Inglês | WPRIM | ID: wpr-37559

RESUMO

Primary neuronal culture is a powerful tool to study neuronal development, aging, and degeneration. However, cultured neurons show signs of cell death after 2 or 3 weeks. Although the mechanism underlying this phenomenon has not been elucidated, several preventive methods have been identified. Here we show that the neuronal loss in primary cortical culture involves calpain activation and subsequent neuronal cell death. Neuronal loss during cultivation showed destruction of neurites and synapses, and a decrease in neuron numbers. micro-Calpain and micro-calpain were initially activated and accumulated by increased RNA expression. This neuronal death exhibited neurodegenerative features, such as conversion of p35 to p25, which is important in the developmental process and in the pathogenesis of Alzheimer's disease. But, postnatal and aged rat cortex did not show calpain activation and prolonged processing of p35 to p25, in contrast to the long-term culture of cortical neurons. In addition, the inhibition of calpains by ALLM or ALLN blocked the conversion of p35 to p25, indicating that the calpain activity is essential for the neurodegenerative features of cell death. Taken together, this study shows that the neuronal loss in primary cortical cultures involves neurodegeneration-like cell death through the activation of calpains and the subsequent processing of p35 to p25, but not developmental apoptosis or aging. Our results suggest that the long term primary culture of cortical neurons represent a valuable model of neurodegeneration, such as Alzheimer's disease.


Assuntos
Ratos , Animais , Transcrição Gênica/genética , Fatores de Tempo , Fosfotransferases/metabolismo , Neurônios/citologia , Células Cultivadas , Forma Celular , Caspases/antagonistas & inibidores , Calpaína/antagonistas & inibidores , Apoptose
7.
Experimental & Molecular Medicine ; : 295-301, 2006.
Artigo em Inglês | WPRIM | ID: wpr-51260

RESUMO

The inducible 70 kDa heat shock proteins (Hsp70) in mice are encoded by two almost identical genes, hsp70.1 and hsp70.3. Studies have found that only hsp70.1 is induced by hypertonic stress while both hsp70.1 and hsp70.3 genes are expressed in response to heat shock stress. It is unclear if the human counterparts, hsp70-2 and hsp70-1, are differentially regulated by heat shock and osmotic stress. This study found that only hsp70-2 was induced by hypertonic stress in human embryonic kidney epithelial cells and fibroblasts, while heat shock stress induced both hsp70-1 and hsp70-2. The human hsp70-2 promoter region contains three TonE (tonicity-responsive enhancer) sites, which were reported to play an important role in the response to hypertonicity. When the reporter plasmids containing different parts of the 5' flanking region of hsp70-2 were transfected into human embryonic kidney epithelial cells or fibroblasts, one TonE site at -135 was found to play a key role in the response to hypertonicity. The inactivation of the TonE site using site-directed mutagenesis led to the complete loss of induction by hypertonicity, which demonstrates the essential role of the TonE site. This suggests that the TonE site and the TonEBP (TonE binding protein) are the major regulators for the cellular response against high osmolarity in human kidney tissue.


Assuntos
Humanos , Transcrição Gênica/efeitos dos fármacos , Fatores de Transcrição/genética , Solução Salina Hipertônica/farmacologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Ligação Proteica , Regiões Promotoras Genéticas/genética , Mutação Puntual , Mutagênese Sítio-Dirigida , Proteínas de Choque Térmico HSP70/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Proteínas de Ligação a DNA/genética , Linhagem Celular , Sítios de Ligação/genética , Sequência de Bases , Região 5'-Flanqueadora/genética
8.
Experimental & Molecular Medicine ; : 575-587, 2005.
Artigo em Inglês | WPRIM | ID: wpr-191493

RESUMO

Rac1 and Rac2 are essential for the control of oxidative burst catalyzed by NADPH oxidase. It was also documented that Rho is associated with the superoxide burst reaction during phagocytosis of serum- (SOZ) and IgG-opsonized zymosan particles (IOZ). In this study, we attempted to reveal the signal pathway components in the superoxide formation regulated by Rho GTPase. Tat-C3 blocked superoxide production, suggesting that RhoA is essentially involved in superoxide formation during phagocytosis of SOZ. Conversely SOZ activated both RhoA and Rac1/2. Inhibition of RhoA-activated kinase (ROCK), an important downstream effector of RhoA, by Y27632 and myosin light chain kinase (MLCK) by ML-7 abrogated superoxide production by SOZ. Extracellular signaling-regulated kinase (ERK)1/2 and p38 mitogen-activated protein kinase (MAPK) were activated during phagocytosis of SOZ, and Tat-C3 and SB203580 reduced ERK1/2 and p38 MAPK activation, suggesting that RhoA and p38 MAPK may be upstream regulators of ERK1/2. Inhibition of ERK1/2, p38 MAPK, phosphatidyl inositol 3-kinase did not block translocation of RhoA to membranes, suggesting that RhoA is upstream to these kinases. Inhibition of RhoA by Tat-C3 blocked phosphorylation of p47 PHOX. Taken together, RhoA, ROCK, p38MAPK, ERK1/2, and p47 PHOX may be subsequently activated, leading to activation of NADPH oxidase to produce superoxide.


Assuntos
Animais , Camundongos , Linhagem Celular , Membrana Celular , Citosol , Inibidores Enzimáticos/farmacologia , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Antígeno de Macrófago 1/farmacologia , Macrófagos/efeitos dos fármacos , Quinase de Cadeia Leve de Miosina/metabolismo , Proteínas Opsonizantes/sangue , Fagocitose , Transporte Proteico , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais , Superóxidos/metabolismo , Acetato de Tetradecanoilforbol/farmacologia , Zimosan/sangue , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Proteína rhoA de Ligação ao GTP/antagonistas & inibidores
9.
Genomics & Informatics ; : 66-72, 2005.
Artigo em Inglês | WPRIM | ID: wpr-40263

RESUMO

The epidermis is a physiological barrier to protect organisms against environment. During the aging process, skin tissues undergo various changes including morphological and functional changes. The transcriptional regulation of genes is part of cellular reaction of aging process. In order to examine the changes of gene expression during the aging process, we used the primary cell culture system of human keratinocytes. Since UV radiation is the most important environmental skin aggressor, causing skin cancer and other problems including premature skin aging, we examined the changes of gene expression in human keratinocytes after UV irradiation using oligonucleotide microarray containing over 10,000 genes. We also compared the gene expression patterns of the senescent and UV treated cells. Expression of the variety of genes related to transcription factors, cell cycle regulation, immune response was altered in human keratinocytes. Some of down-regulated genes are represented in both senescent and UV treated cells. The results may provide a new view of gene expression following UVB exposure and aging process in human keratinocytes.


Assuntos
Humanos , Envelhecimento , Ciclo Celular , Epiderme , Expressão Gênica , Queratinócitos , Análise de Sequência com Séries de Oligonucleotídeos , Cultura Primária de Células , Pele , Envelhecimento da Pele , Neoplasias Cutâneas , Fatores de Transcrição
10.
Experimental & Molecular Medicine ; : 468-475, 2004.
Artigo em Inglês | WPRIM | ID: wpr-226074

RESUMO

The heterodimeric c-Jun/c-Fos, an activator protein-1 (AP-1) has been implicated in mesoderm induction (Dong et al., 1996; Kim et al., 1998) whereas the homodimer of c-Jun was reported to be involved in neural inhibition during the early development of Xenopus embryos. During the early vertebrate development AP-1 involvement in the neural induction is still not clearly understood. We report here that AP-1 has a role in Zic3 expression, a critical proneural gene and a primary regulator of neural and neural crest development (Nakata et al., 1997; Nakata et al., 1998). AP-1 was able to induce the Zic3 gene in a dose dependent manner but other homo- or hetero-dimeric proteins, such as c-Jun/c-Jun, JunD/FosB or JunD/Fra-1 were not. The inhibition of AP-1 activity using morpholino antisenses of c-jun mRNAs blocked the Zic3 expression induced by activin. In addition, co-injection of c-jun mRNA rescued the down-regulated Zic3 expression. The promoter region of isolated Zic3 genomic DNA was found to possess several consensus-binding site of AP-1. Thus, in the functional assays, AP-1 could increase promoter activity of Zic3 gene. These findings suggest that proneural gene, Zic3 may be regulated by heterodimeric AP-1(c-Jun/c-Fos) and it may have a role in activin signaling for the regulation of neural specific gene, Zic3.


Assuntos
Animais , Ativinas/farmacologia , Sequência de Bases , Sítios de Ligação/genética , Sequência Consenso/genética , Dimerização , Embrião não Mamífero/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/genética , Dados de Sequência Molecular , Regiões Promotoras Genéticas/genética , Proteínas Proto-Oncogênicas c-fos/genética , Proteínas Proto-Oncogênicas c-jun/genética , RNA Antissenso/genética , Fator de Transcrição AP-1/genética , Fatores de Transcrição/genética , Transcrição Gênica , Regulação para Cima , Proteínas de Xenopus/genética , Xenopus laevis/embriologia
11.
Experimental & Molecular Medicine ; : 211-221, 2003.
Artigo em Inglês | WPRIM | ID: wpr-10309

RESUMO

Phagocytosis of serum- and IgG-opsonized zymosan (SOZ and IOZ, respectively) particles into J774A.1 macrophages induced apoptosis of the cells, accompanied by the expression of p21(WAF1), one of cyclin-dependent protein kinase (CDK) inhibitors. Furthermore, phagocytosis of SOZ and IOZ particles into macophages induced superoxide formation. Tat-superoxide dismutase (SOD), which is readily transduced into the cells using Tat-domain, protected the cells from the apoptosis induced by phagocytosis of SOZ and IOZ particles. lipopolysaccharide (LPS)/interferon-gamma (IFN-gamma) also caused the apoptosis of the cells. However, Tat-SOD could not protect the cells from LPS/IFN-gamma induced apoptosis, suggesting that apoptosis mechanisms involved are different from each other. In the present study, we determined the amounts of nitric oxide (NO) produced by SOZ, IOZ, and LPS/IFN-gamma, and found that SOZ and IOZ did not induce the generation of NO in macrophages, whereas LPS/ IFN-gamma did. The apoptosis due to phagocytosis was accompanied with the release of cytochrome c from mitochondrial membrane to cytosolic fraction. Furthermore, SOZ and IOZ induced the cleavage of procasapase-3 (35 kDa) to give rise to an active caspase-3 (20 kDa), which was blocked by Tat- SOD but not by 2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl 3-oxide (PTIO), a scavenger of NO. On the other hand, LPS/IFN-gamma caused the activation of procaspase-3, which was blocked by PTIO but not by Tat-SOD. Taken together, phagocytosis of SOZ and IOZ particles induced apoptosis through superoxide but not NO in macrophages, accompanied with the release of cytochrome c and the activation of caspase-3.


Assuntos
Apoptose/imunologia , Caspases/metabolismo , Linhagem Celular , Ciclinas/biossíntese , Citocromos c/metabolismo , Imunoglobulina G/imunologia , Interferon gama/farmacologia , Lipopolissacarídeos/farmacologia , Macrófagos/imunologia , Óxido Nítrico/metabolismo , Proteínas Opsonizantes/imunologia , Fagocitose/fisiologia , Superóxido Dismutase/metabolismo , Superóxidos/metabolismo , Zimosan
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA