Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Adicionar filtros








Intervalo de ano
1.
Artigo em Inglês | WPRIM | ID: wpr-1003160

RESUMO

Numerous studies have aimed to develop novel advanced vaccines, in part because traditional vaccines have been unsuccessful in preventing rapidly emerging and reemerging viral and bacterial infections. There is a need for an advanced vaccine delivery system to ensure the successful induction of humoral and cellular immune responses. In particular, the ability of nanovaccines to modulate intracellular antigen delivery by inducing exogenous antigens (loaded onto major histocompatibility complex class 1 molecules) in CD8+ T cells, the so-called cross-presentation pathway, has attracted a great deal of attention. Protection against viral and intracellular bacterial infections relies on cross-presentation.This review discusses the advantages, requirements, and preparation of nanovaccines, the cross-presentation mechanism, the several parameters affecting cross-presentation by nanovaccines, and future perspectives.

2.
Immune Network ; : e47-2023.
Artigo em Inglês | WPRIM | ID: wpr-1040782

RESUMO

Scrub typhus, a mite-borne infectious disease, is caused by Orientia tsutsugamushi. Despite many attempts to develop a protective strategy, an effective preventive vaccine has not been developed. The identification of appropriate Ags that cover diverse antigenic strains and provide long-lasting immunity is a fundamental challenge in the development of a scrub typhus vaccine. We investigated whether this limitation could be overcome by harnessing the nanoparticle-forming polysorbitol transporter (PST) for an O. tsutsugamushi vaccine strategy.Two target proteins, 56-kDa type-specific Ag (TSA56) and surface cell Ag A (ScaA) were used as vaccine candidates. PST formed stable nano-size complexes with TSA56 (TSA56-PST) and ScaA (ScaA-PST); neither exhibited cytotoxicity. The formation of Ag-specific IgG2a, IgG2b, and IgA in mice was enhanced by intranasal vaccination with TSA56-PST or ScaA-PST. The vaccines containing PST induced Ag-specific proliferation of CD8 + and CD4 +T cells. Furthermore, the vaccines containing PST improved the mouse survival against O.tsutsugamushi infection. Collectively, the present study indicated that PST could enhance both Ag-specific humoral immunity and T cell response, which are essential to effectively confer protective immunity against O. tsutsugamushi infection. These findings suggest that PST has potential for use in an intranasal vaccination strategy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA