Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Environmental Health and Toxicology ; : 2018006-2018.
Artigo em Inglês | WPRIM | ID: wpr-786739

RESUMO

Oxidative stress was evaluated for anthracene (Ant) and alkyl-Ants (9-methylanthracene [9-MA] and 9,10-dimethylanthracene [9,10-DMA]) in Caenorhabditis elegans to compare changes in toxicity due to the degree of alkylation. Worms were exposed at 1) the same external exposure concentration and 2) the maximum water-soluble concentration. Formation of reactive oxygen species, superoxide dismutase activity, total glutathione concentration, and lipid peroxidation were determined under constant exposure conditions using passive dosing. The expression of oxidative stress-related genes (daf-2, sir-2.1, daf-16, sod-1, sod-2, sod-3 and cytochrome 35A/C family genes) was also investigated to identify and compare changes in the genetic responses of C. elegans exposed to Ant and alkyl-Ant. At the same external concentration, 9,10-DMA induced the greatest oxidative stress, as evidenced by all indicators, except for lipid peroxidation, followed by 9-MA and Ant. Interestingly, 9,10-DMA led to greater oxidative stress than 9-MA and Ant when worms were exposed to the maximum water-soluble concentration, although the maximum water-soluble concentration of 9,10-DMA is the lowest. Increased oxidative stress by alkyl-Ants would be attributed to higher lipid-water partition coefficient and the π electron density in aromatic rings by alkyl substitution, although this supposition requires further confirmation.


Assuntos
Humanos , Alquilação , Formigas , Caenorhabditis elegans , Caenorhabditis , Citocromos , Expressão Gênica , Glutationa , Peroxidação de Lipídeos , Estresse Oxidativo , Hidrocarbonetos Policíclicos Aromáticos , Espécies Reativas de Oxigênio , Superóxido Dismutase
2.
Environmental Health and Toxicology ; : e2018006-2018.
Artigo em Inglês | WPRIM | ID: wpr-713223

RESUMO

Oxidative stress was evaluated for anthracene (Ant) and alkyl-Ants (9-methylanthracene [9-MA] and 9,10-dimethylanthracene [9,10-DMA]) in Caenorhabditis elegans to compare changes in toxicity due to the degree of alkylation. Worms were exposed at 1) the same external exposure concentration and 2) the maximum water-soluble concentration. Formation of reactive oxygen species, superoxide dismutase activity, total glutathione concentration, and lipid peroxidation were determined under constant exposure conditions using passive dosing. The expression of oxidative stress-related genes (daf-2, sir-2.1, daf-16, sod-1, sod-2, sod-3 and cytochrome 35A/C family genes) was also investigated to identify and compare changes in the genetic responses of C. elegans exposed to Ant and alkyl-Ant. At the same external concentration, 9,10-DMA induced the greatest oxidative stress, as evidenced by all indicators, except for lipid peroxidation, followed by 9-MA and Ant. Interestingly, 9,10-DMA led to greater oxidative stress than 9-MA and Ant when worms were exposed to the maximum water-soluble concentration, although the maximum water-soluble concentration of 9,10-DMA is the lowest. Increased oxidative stress by alkyl-Ants would be attributed to higher lipid-water partition coefficient and the π electron density in aromatic rings by alkyl substitution, although this supposition requires further confirmation.


Assuntos
Humanos , Alquilação , Formigas , Caenorhabditis elegans , Caenorhabditis , Citocromos , Expressão Gênica , Glutationa , Peroxidação de Lipídeos , Estresse Oxidativo , Hidrocarbonetos Policíclicos Aromáticos , Espécies Reativas de Oxigênio , Superóxido Dismutase
3.
Environmental Health and Toxicology ; : e2013013-2013.
Artigo em Inglês | WPRIM | ID: wpr-81333

RESUMO

OBJECTIVES: Potential environmental risks caused by chemicals that could be released from a recycled plastic product were assessed using a screening risk assessment procedure for chemicals in recycled products. METHODS: Plastic slope protection blocks manufactured from recycled plastics were chosen as model recycled products. Ecological risks caused by four model chemicals -di-(2-ethylhexyl) phthalate (DEHP), diisononyl phthalate (DINP), cadmium (Cd), and lead (Pb)- were assessed. Two exposure models were built for soil below the block and a hypothetic stream receiving runoff water. Based on the predicted no-effect concentrations for the selected chemicals and exposure scenarios, the allowable leaching rates from and the allowable contents in the recycled plastic blocks were also derived. RESULTS: Environmental risks posed by slope protection blocks were much higher in the soil compartment than in the hypothetic stream. The allowable concentrations in leachate were 1.0x10(-4), 1.2x10(-5), 9.5x10(-3), and 5.3x10(-3) mg/L for DEHP, DINP, Cd, and Pb, respectively. The allowable contents in the recycled products were 5.2x10(-3), 6.0x10(-4), 5.0x10(-1), and 2.7x10(-1) mg/kg for DEHP, DINP, Cd, and Pb, respectively. CONCLUSIONS: A systematic ecological risk assessment approach for slope protection blocks would be useful for regulatory decisions for setting the allowable emission rates of chemical contaminants, although the method needs refinement.


Assuntos
Cádmio , Dietilexilftalato , Programas de Rastreamento , Plásticos , Medição de Risco , Rios , Solo , Água
4.
Toxicological Research ; : 19-24, 2012.
Artigo em Inglês | WPRIM | ID: wpr-21404

RESUMO

In the present study, toxicity of silver nanoparticles (AgNPs) was investigated in the nematode, Caenohabditis elegans focusing on the upstream signaling pathway responsible for regulating oxidative stress, such as mitogen-activated protein kinase (MAPK) cascades. Formation of reactive oxygen species (ROS) was observed in AgNPs exposed C. elegans, suggesting oxidative stress as an important mechanism in the toxicity of AgNPs towards C. elegans. Expression of genes in MAPK signaling pathways increased by AgNPs exposure in less than 2-fold compared to the control in wildtype C. elegans, however, those were increased dramatically in sod-3 (gk235) mutant after 48 h exposure of AgNPs (i.e. 4-fold for jnk-1 and mpk-2; 6-fold for nsy-1, sek-1, and pmk-1, and 10-fold for jkk-1). These results on the expression of oxidative stress response genes suggest that sod-3 gene expression appears to be dependent on p38 MAPK activation. The high expressions of the pmk-1 gene 48 h exposure to AgNPs in the sod-3 (gk235) mutant can also be interpreted as compensatory mechanisms in the absence of important stress response genes. Overall results suggest that MAPK-based integrated stress signaling network seems to be involved in defense to AgNPs exposure in C.elegans.


Assuntos
Caenorhabditis elegans , Expressão Gênica , Nanopartículas , Estresse Oxidativo , Proteínas Quinases p38 Ativadas por Mitógeno , Proteínas Quinases , Espécies Reativas de Oxigênio , Prata
5.
Environmental Health and Toxicology ; : e2011015-2011.
Artigo em Inglês | WPRIM | ID: wpr-101249

RESUMO

OBJECTIVES: Maintaining the constant exposure to hydrophobic organic compouds in acute toxicity tests is one of the most difficult issues in the evaluation of their toxicity and corresponding risks. Passive dosing is an emerging tool to keep constant aqueous concentration because of the overwhelming mass loaded in the dosing phase. The primary objectives of this study were to develop the constant exposure condition for an acute mortality test and to compare the performance of the passive dosing method with the conventional spiking with co-solvent. METHODS: A custom cut polydimethylsiloxane (PDMS) tubing loaded with benzyl butyl phthalate (BBP) was placed in each well of a 24-well plate containing assay medium. The rate of the release of BBP from PDMS was evaluated by measuring the change in the concentration of BBP in the assay medium. The efficiency of maintaining constant exposure condition was also evaluated using a simple two-compartment mass transport model employing a film-diffusion theory. An acute mortality test using 10 C. elegans in each well was conducted for the evaluation of the validity of passive dosing and the comparative evaluation of the passive dosing method and the conventional spiking method. RESULTS: Free concentration in the assay medium reached 95% steady state value within 2.2 hours without test organisms, indicating that this passive dosing method is useful for an acute toxicity test in 24 hours. The measured concentration after the mortality test agreed well with the estimated values from partitioning between PDMS and the assay medium. However, the difference between the nominal and the free concentration became larger as the spiked concentration approached water solubility, indicating the instability of the conventional spiking with a co-solvent. CONCLUSIONS: The results in this study support that passive dosing provides a stable exposure condition for an acute toxicity test. Thus, it is likely that more reliable toxicity assessment can be made for hydrophobic chemicals using passive dosing.


Assuntos
Benzofenonas , Disponibilidade Biológica , Ácidos Borônicos , Caenorhabditis , Caenorhabditis elegans , Dibutilftalato , Dimetilpolisiloxanos , Ácidos Ftálicos , Solubilidade , Testes de Toxicidade Aguda
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA