Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Adicionar filtros








Intervalo de ano
1.
Journal of Medical Biomechanics ; (6): E177-E183, 2021.
Artigo em Chinês | WPRIM | ID: wpr-904383

RESUMO

Objective Aiming at the clinical problem of the low matching degree with the patient’s anatomical morphology for traditional cervical fusion cage, a cervical fusion cage with the function of adjustable height and the shape matched with the vertebral body was established, and its biomechanical properties were evaluated. Methods A cervical C4-5 segment fusion model was established according to anterior cervical discectomy and fusion (ACDF), so as to simulate different motion conditions, i.e. anterior flexion, posterior extension, left/right lateral flexion, left/right rotation, and stress of the fusion cage and vertebral endplate was calculated. After three-dimensional (3D) printing of the fusion cage, an in vitro mechanical experiment was conducted to explore safety and stability of the fusion cage. ResultsThe fusion cage could keep the range of motion (ROM) of cervical vertebrae at the fusion segment with 1°-2.8° and reduce the ROM to 40%-80% of the natural segment. In the in vitro compression test, the yield load of the fusion cage was (2 721.67±209) N, which met the maximum demand of the physiological load in service state. Conclusions The designed fusion device with adjustable height shows better biomechanical properties and can reduce the selection step in operation.

2.
Journal of Medical Biomechanics ; (6): E102-E109, 2021.
Artigo em Chinês | WPRIM | ID: wpr-904372

RESUMO

Objective To propose a quick and low-cost personalized diabetic foot modeling and insole design scheme, so as to reduce the plantar pressure accurately. Methods The foot model of the patient was constructed by scaling the model with foot feature parameters, to make biomechanical analysis on plantar pressure. By means of numerical mapping model of insole elasticity and plantar pressure, the three-dimensional (3D) personalized insole model with gradient modulus was constructed. The insole was then manufactured via 3D printing technology and used for experimental validation. Results The related mechanical parameters from finite element prediction of the foot model constructed by the scaling modeling method were close to those of the CT reconstructed model, and the maximum error was controlled within 15%. Compared with wearing the normal insole, the peak pressure of the personalized insole was effectively reduced by 20%. The time and economic cost of this simplified design was reduced by approximately 90%. Conclusions The design scheme of the diabetes insole shortens the design cycle, and the personalized insole can effectively and accurately reduce the sole pressure, and reduce the risk of foot ulcer, which provides a technical basis for the promotion of the personalized diabetes insole.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA