Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Adicionar filtros








Intervalo de ano
1.
Journal of Veterinary Science ; : 457-465, 2013.
Artigo em Inglês | WPRIM | ID: wpr-43061

RESUMO

Bacillus (B.) anthracis, the etiological agent of anthrax, is one of the most genetically monomorphic bacteria species in the world. Due to the very limited genetic diversity of this species, classification of isolates of this bacterium requires methods with high discriminatory power. Single nucleotide repeat (SNR) analysis is a type of variable-number tandem repeat assay that evaluates regions with very high mutation rates. To subtype a collection of 21 isolates that were obtained during a B. anthracis outbreak in Korea, we analyzed four SNR marker loci using nucleotide sequencing analysis. These isolates were obtained from soil samples and the Korean Center for Disease Control and Prevention. The SNR analysis was able to detect 13 subgenotypes, which allowed a detailed evaluation of the Korean isolates. Our study demonstrated that the SNR analysis was able to discriminate between strains with the same multiple-locus variable-number tandem repeat analysis genotypes. In summary, we obtained SNR results for four SNR marker loci of newly acquired strains from Korea. Our findings will be helpful for creating marker systems and help identify markers that could be used for future forensic studies.


Assuntos
Bacillus anthracis/classificação , Variação Genética , Repetições Minissatélites , Reação em Cadeia da Polimerase/veterinária , República da Coreia , Análise de Sequência de DNA/métodos , Microbiologia do Solo
2.
Experimental & Molecular Medicine ; : 503-512, 2012.
Artigo em Inglês | WPRIM | ID: wpr-192552

RESUMO

Human bone marrow mesenchymal stem cells (MSCs) expanded in vitro exhibit not only a tendency to lose their proliferative potential, homing ability and telomere length but also genetic or epigenetic modifications, resulting in senescence. We compared differential methylation patterns of genes and miRNAs between early-passage [passage 5 (P5)] and late-passage (P15) cells and estimated the relationship between senescence and DNA methylation patterns. When we examined hypermethylated genes (methylation peak > or = 2) at P5 or P15, 2,739 genes, including those related to fructose and mannose metabolism and calcium signaling pathways, and 2,587 genes, including those related to DNA replication, cell cycle and the PPAR signaling pathway, were hypermethylated at P5 and P15, respectively. There was common hypermethylation of 1,205 genes at both P5 and P15. In addition, genes that were hypermethylated at P5 (CPEB1, GMPPA, CDKN1A, TBX2, SMAD9 and MCM2) showed lower mRNA expression than did those hypermethylated at P15, whereas genes that were hypermethylated at P15 (MAML2, FEN1 and CDK4) showed lower mRNA expression than did those that were hypermethylated at P5, demonstrating that hypermethylation at DNA promoter regions inhibited gene expression and that hypomethylation increased gene expression. In the case of hypermethylation on miRNA, 27 miRNAs were hypermethylated at P5, whereas 44 miRNAs were hypermethylated at P15. These results show that hypermethylation increases at genes related to DNA replication, cell cycle and adipogenic differentiation due to long-term culture, which may in part affect MSC senescence.


Assuntos
Humanos , Células da Medula Óssea/metabolismo , Metilação de DNA , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Células-Tronco Mesenquimais/metabolismo , MicroRNAs , Anotação de Sequência Molecular , Cultura Primária de Células , Regiões Promotoras Genéticas , Reprodutibilidade dos Testes , Transdução de Sinais , Encurtamento do Telômero
3.
Journal of Veterinary Science ; : 385-393, 2012.
Artigo em Inglês | WPRIM | ID: wpr-202781

RESUMO

Bacillus (B.) anthracis is the pathogen that causes fatal anthrax. Strain-specific detection of this bacterium using molecular approaches has enhanced our knowledge of microbial population genetics. In the present study, we employed molecular approaches including multiple-locus variable-number tandem repeat analysis (MLVA) and canonical single-nucleotide polymorphism (canSNP) analysis to perform molecular typing of B. anthracis strains isolated in Korea. According to the MLVA, 17 B. anthracis isolates were classified into A3a, A3b, and B1 clusters. The canSNP analyses subdivided the B. anthracis isolates into two of the three previously recognized major lineages (A and B). B. anthracis isolates from Korea were found to belong to four canSNP sub-groups (B.Br.001/2, A.Br.005/006, A.Br.001/002, and A.Br.Ames). The A.Br.001/002 and A.Br.Ames sub-lineages are closely related genotypes frequently found in central Asia and most isolates were. On the other hand, B. anthracis CH isolates were analyzed that belonged to the B.Br.001/002 sub-group which found in southern Africa, Europe and California (USA). B.Br.001/002 genotype is new lineage of B. anthracis in Korea that was not found before. This discovery will be helpful for the creation of marker systems and might be the result of human activity through the development of agriculture and increased international trade in Korea.


Assuntos
África Austral , Agricultura , Antraz , Ásia , Bacillus , Bacillus anthracis , California , Europa (Continente) , Genética Populacional , Genótipo , Mãos , Atividades Humanas , Tipagem Molecular , Sequências de Repetição em Tandem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA