Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Adicionar filtros








Intervalo de ano
1.
The Korean Journal of Physiology and Pharmacology ; : 649-660, 2018.
Artigo em Inglês | WPRIM | ID: wpr-727860

RESUMO

Migraine is a neurological disorder characterized by recurrent and disabling severe headaches. Although several anticonvulsant drugs that block voltage-dependent Na⁺ channels are widely used for migraine, far less is known about the therapeutic actions of carbamazepine on migraine. In the present study, therefore, we characterized the effects of carbamazepine on tetrodotoxin-resistant (TTX-R) Na⁺ channels in acutely isolated rat dural afferent neurons, which were identified by the fluorescent dye DiI. The TTX-R Na⁺ currents were measured in medium-sized DiIpositive neurons using the whole-cell patch clamp technique in the voltage-clamp mode. While carbamazepine had little effect on the peak amplitude of transient Na⁺ currents, it strongly inhibited steady-state currents of transient as well as persistent Na⁺ currents in a concentration-dependent manner. Carbamazepine had only minor effects on the voltage-activation relationship, the voltage-inactivation relationship, and the use-dependent inhibition of TTX-R Na⁺ channels. However, carbamazepine changed the inactivation kinetics of TTX-R Na⁺ channels, significantly accelerating the development of inactivation and delaying the recovery from inactivation. In the current-clamp mode, carbamazepine decreased the number of action potentials without changing the action potential threshold. Given that the sensitization of dural afferent neurons by inflammatory mediators triggers acute migraine headaches and that inflammatory mediators potentiate TTX-R Na⁺ currents, the present results suggest that carbamazepine may be useful for the treatment of migraine headaches.


Assuntos
Animais , Ratos , Potenciais de Ação , Anticonvulsivantes , Carbamazepina , Cefaleia , Cinética , Transtornos de Enxaqueca , Doenças do Sistema Nervoso , Neurônios , Neurônios Aferentes , Canais de Sódio , Gânglio Trigeminal
2.
The Korean Journal of Physiology and Pharmacology ; : 215-223, 2017.
Artigo em Inglês | WPRIM | ID: wpr-728577

RESUMO

The effects of acidic pH on several voltage-dependent ion channels, such as voltage-dependent K⁺ and Ca²⁺ channels, and hyperpolarization-gated and cyclic nucleotide-activated cation (HCN) channels, were examined using a whole-cell patch clamp technique on mechanically isolated rat mesencephalic trigeminal nucleus neurons. The application of a pH 6.5 solution had no effect on the peak amplitude of voltage-dependent K⁺ currents. A pH 6.0 solution slightly, but significantly inhibited the peak amplitude of voltage-dependent K⁺ currents. The pH 6.0 also shifted both the current-voltage and conductance-voltage relationships to the depolarization range. The application of a pH 6.5 solution scarcely affected the peak amplitude of membrane currents mediated by HCN channels, which were profoundly inhibited by the general HCN channel blocker Cs⁺ (1 mM). However, the pH 6.0 solution slightly, but significantly inhibited the peak amplitude of HCN-mediated currents. Although the pH 6.0 solution showed complex modulation of the current-voltage and conductance-voltage relationships, the midpoint voltages for the activation of HCN channels were not changed by acidic pH. On the other hand, voltage-dependent Ca²⁺ channels were significantly inhibited by an acidic pH. The application of an acidic pH solution significantly shifted the current-voltage and conductance-voltage relationships to the depolarization range. The modulation of several voltage-dependent ion channels by an acidic pH might affect the excitability of mesencephalic trigeminal nucleus neurons, and thus physiological functions mediated by the mesencephalic trigeminal nucleus could be affected in acidic pH conditions.


Assuntos
Animais , Ratos , Acidose , Mãos , Concentração de Íons de Hidrogênio , Canais Iônicos , Membranas , Neurônios , Propriocepção , Tegmento Mesencefálico
3.
The Korean Journal of Physiology and Pharmacology ; : 13-17, 2006.
Artigo em Inglês | WPRIM | ID: wpr-728406

RESUMO

Experimentally induced cortical disorganization exhibits many anatomical features which are characteristic of cortical malformations in children with early-onset epilepsy. We used an immunocytochemical technique and extracellular field potential recordings from the dorsal hippocampus to determine whether the excitability of the CA1 pyramidal cells was enhanced in rats with experimentally induced hippocampal dysplasia. Compared with control rats, the MAM-treated rats displayed a decrease of paired pulse inhibition. When GABAA receptor antagonists were blocked with 10microM bicuculline, the amplitude of the second population spike of the MAM-treated of rats was similar to that of the first population spike, as was in the control rats. The MAM-treated rats had fewer somatostatin and parvalbumin-immunoreactive neurons than the control rats. These results suggest that the enhanced neuronal responsiveness of the in vivo recording of the CA1 in this animal model may involve a reduction of CA1 inhibition.


Assuntos
Animais , Criança , Humanos , Ratos , Bicuculina , Epilepsia , Hipocampo , Modelos Animais , Neurônios , Células Piramidais , Somatostatina
4.
The Korean Journal of Physiology and Pharmacology ; : 235-242, 2006.
Artigo em Inglês | WPRIM | ID: wpr-728551

RESUMO

Cortical malformation-associated epileptic seizures are resistant to conventional anticonvulsant drugs. Relatively little research has been conducted on the effects of antiepileptic drugs (AEDs) on seizure activity in a rat model of dysplasia. We have used rats exposed to methylazoxymethanol acetate (MAM) in utero, an animal model featuring nodular heterotopia, to investigate the effects of ethosuximide (ETX) in the dysplastic brain. Pilocarpine was used to induce acute seizure in MAM-exposed and age-matched vehicle-injected control animals. Field potential recordings were used to monitor the amplitude and number of population spikes, and paired pulse inhibition in response to stimulation of the commissural pathway. Pharmaco-resistance was tested by measuring seizure latencies after pilocarpine administration (320 mg/kg, i.p.) with and without pre-treatment with ETX. Pre-treatment with 300 mg of ETX significantly prolonged the latency to the status epilepticus (SE) in both control and MAM-treated groups. Pre-treatment with ETX 100mg and ETX 200 mg had little effect in MAM-exposed rats. However, ETX 200 mg prolonged the latency to the SE in control groups. Spontaneous field potential and secondary after-discharges were higher for MAM-treated rat in comparison with control rats injects with ETX. The main findings of this study are that acute seizures initiated in MAM-exposed rats are relatively resistant to standard ETX assessed in vivo. These data suggest that ETX do not prolong seizure latencies in MAM-rats exposed to pilocarpine.


Assuntos
Animais , Ratos , Anticonvulsivantes , Encéfalo , Epilepsia , Etossuximida , Acetato de Metilazoximetanol , Modelos Animais , Malformações do Desenvolvimento Cortical do Grupo II , Neurônios , Pilocarpina , Convulsões , Estado Epiléptico
5.
The Korean Journal of Physiology and Pharmacology ; : 129-132, 2004.
Artigo em Inglês | WPRIM | ID: wpr-728492

RESUMO

Single unit responses of the ventral posterior medial (VPM) thalamic neurons to stimulation were monitored in anesthetized rats during activation of contralateral primary somatosensory (SI) cortex by GABA antagonist. The temporal changes of afferent sensory transmission were quantitatively analyzed by poststimulus time histogram (PSTH). Mainly, afferent sensory transmission to VPM thalamus was facilitated (15 neurons of total 23) by GABA antagonist (bicuculline) applied to contralateral cortex, while 7 neurons were suppressed. However, when ipsilateral cortex was inactivated by GABA agonist, musimol, there was significant suppression of afferent sensory transmission of VPM thalamus. This suppressed responsiveness by ipsilateral musimol was not affected by bicuculline applied to contralateral cortex. These results suggest that afferent transmission to VPM thalamus may be subjected to the interhemispheric modulation via ipsilateral cortex during inactivation of GABAergic neurons in contralateral SI cortex.


Assuntos
Animais , Ratos , Bicuculina , Agonistas GABAérgicos , Antagonistas GABAérgicos , Neurônios GABAérgicos , Ácido gama-Aminobutírico , Neurônios , Córtex Somatossensorial , Tálamo
6.
The Korean Journal of Physiology and Pharmacology ; : 297-305, 1998.
Artigo em Inglês | WPRIM | ID: wpr-727530

RESUMO

This study used in vivo intracellular recording in rat hippocampus to evaluate the effect of lidocaine and MK-801 on the membrane properties and the synaptic responses of individual neurons to electrical stimulation of the commissural pathway. Cells in control group typically fired in a tonic discharge mode with an average firing frequency of 2.4+/-0.9 Hz. Neuron in MK-801 treated group (0.2 mg/kg, i.p.) had an average input resistance of 32.8 +/- 5.7 Mg and a membrane time constant of 7.4 +/- 1. 8 ms. These neurons exhibited 2.4 +/- 0.2 ms spike durations, which were similar to the average spike duration recorded in the neurons of the control group. Slightly less than half of these neurons were firing spontaneously with an average discharge rate of 2.4 +/- 1.1 Hz. The average peak amplitude of the ABP following the spikes in these groups was 7.4+/-0.6 mV with respect to the resting membrane potentiaL Cells in MK-801 and lidocaine treated group (5 mg/kg, i.c.v.) had an average input resistance of 34.5+/-6.0 Mg and an average time constant of 8.0+/-1.4 ms. The cells were firing spontaneously at an average discharge rate of 0.6+/-0.4 Hz. Upon depolarization of the membrane by 0.8 nA for 400 ms, all of the tested cells exhibited accommodation of spike discharge. The most common synaptic response contained an EPSP followed by early-IPSP and late-IPSP. Analysis of the voltage dependence revealed that the early-IPSP and late-IPSP were putative Cl-and K+-dependent, respectively. Systemic injection of the NMDA receptor blocker, MK-801, did not block synaptic responses to the stimulation of the commissural pathway. No significant modifications of EPSP, early-IPSP, or late-IPSP components were detected in the MK-801 and/or lidocaine treated group. These results suggest that MK-801 and lidocaine manifest their CNS effects through firing pattern of hippocampal pyramidal cells and neural network pattern by changing the synaptic efficacy and cellular membrane properties.


Assuntos
Animais , Ratos , Anestésicos Locais , Maleato de Dizocilpina , Estimulação Elétrica , Potenciais Pós-Sinápticos Excitadores , Incêndios , Hipocampo , Lidocaína , Potenciais da Membrana , Membranas , N-Metilaspartato , Neurônios , Células Piramidais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA