Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Adicionar filtros








Intervalo de ano
1.
Chinese Herbal Medicines ; (4): 342-350, 2021.
Artigo em Chinês | WPRIM | ID: wpr-953641

RESUMO

Objective: To investigate the mechanisms of andrographolide against non-alcoholic steatohepatitis (NASH) based on network pharmacology, so as to provide a reference for further study of andrographolide in the treatment of NASH and other metabolic diseases. Methods: The methionine- and choline-deficient (MCD) diet-induced NASH mice were treated by administration of andrographolide, and serum transaminase and pathological changes were analyzed. The network pharmacology-based bioinformatic strategy was then used to search the potential targets, construct protein–protein interaction (PPI) network, analyze gene ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG) pathway enrichment, and conduct molecular docking to explore the molecular mechanisms. Results: The predicted core targets TNF, MAPK8, IL6, IL1B and AKT1 were enriched in non-alcoholic fatty liver disease (NAFLD) signaling pathway and against NASH by regulation of de novo fatty acids synthesis, anti-inflammation and anti-oxidation. Conclusion: This work provides a scientific basis for further demonstration of the anti-NASH mechanisms of andrographolide.

2.
Acta Pharmaceutica Sinica ; (12): 2064-2075, 2018.
Artigo em Chinês | WPRIM | ID: wpr-780089

RESUMO

To investigate the anti-inflammatory mechanisms of taurochenodeoxycholic acid (TCDCA), the molecule structure file of TCDCA was downloaded from PubChem database, PharmMapper and GeneCards were used to predict and screen the targets of TCDCA. STRING database and Cytoscape software were used to construct protein interactions network. GO and KEGG analysis was preformed through STRING database. The key targets were validated by molecular docking and the targets type was attributed by DisGeNET database. The network showed that 89 targets were involved in 68 biological processes including response to stimulus, multicellular organismal process, single-multicellular organism process, response to chemical, response to organic substance, by adjusting 51 signaling pathways, such as pathways in cancer, progesterone-mediated oocyte maturation, MAPK signaling pathway, proteoglycans in cancer. These findings provide an overview of anti-inflammation of TCDCA, which reflects the characteristic of multi-targets and multi-pathways of TCDCA. It pointed out the direction for further research on anti-inflammatory mechanism of TCDCA.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA