RESUMO
<p><b>OBJECTIVE</b>To investigate the role of miR-199a-3p in cardiac fibrosis and the potential target of miR-199a-3p.</p><p><b>METHODS</b>Cardiac fibroblasts were isolated from C57BL/6 mice and cultured. The miR-199a-3p mimic and Smad1 siRNA were transiently transfected into the cardiac fibroblasts via liposome. Dual luciferase reporter assay was performed to confirm the interaction between miR-199a-3p and the 3'-UTR of Smad1. The expressions of Smad1 and fibrosis-related genes at the mRNA and protein levels in the cells after miR-199a-3p mimic transfection were determined using RT-qPCR and Western blotting, respectively. The expressions of Smad1, Smad3 and fibrosis-related genes at the protein level in cells transfected with miR-199a-3p mimic and Smad1 siRNA were detected using Western blotting.</p><p><b>RESULTS</b>Over-expression of miR-199a-3p significantly increased the expression of cardiac fibrosis-related genes in cultured mouse cardiac fibroblasts. Dual luciferase reporter assay revealed the interaction of miR-199a-3p with the 3'-UTR of Smad1. The results of RT-qPCR and Western blotting confirmed that miR-199a-3p inhibited Smad1 expression at the post- transcriptional level. Transfection with miR-199a-3p mimic and siRNA-mediated Smad1 silencing consistently activated the Smad3 signaling pathway and enhanced the expressions of cardiac fibrosis-related genes in the cardiac fibroblasts.</p><p><b>CONCLUSIONS</b>As the target gene of miR-199a-3p, Smad1 mediates the pro-fibrotic effect of miR-199a-3p by activating the Smad3 signaling in cultured mouse cardiac fibroblasts.</p>