Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Adicionar filtros








Intervalo de ano
1.
Journal of Southern Medical University ; (12): 181-186, 2018.
Artigo em Chinês | WPRIM | ID: wpr-299281

RESUMO

<p><b>OBJECTIVE</b>To investigate the role of calcium/calmodulin-dependent protein kinase II (CaMKII) in myocardial ischemia-reperfusion (IR) injury in isolated perfused rat heart and explore the underlying mechanisms.</p><p><b>METHODS</b>An ischemia-reperfusion (IR) model was prepared using isolated rat hearts perfused with Krebs-Henseleit solution were randomly divided into control group, 2.5 µmol/L KN-93 group, IR (induced by ischemia for 45 min followed by reperfusion for 120 min) group and KN-93+IR group. The myocardial performance was evaluated by assessing the left ventricular pressure. Lactate dehydrogenase (LDH) activity and cTnI content in the coronary flow and the infarct size were determined to evaluate the myocardial injury. The phosphorylation of CaMKII (p-CaMKII) and PLN (p-PLN) and oxidation of CaMKII (ox--CaMKII) were measured with Western blotting. The activity of mitochondrial superoxide dismutase (SOD) and the content of malondialdehyde (MDA) were determined using ELISA.</p><p><b>RESULTS</b>Compared with the control group, KN-93 treatment at 2.5 µmol/L produced no significant effects on cardiac function or performance in rat hearts without IR injury. Myocardial IR injury significantly decreased myocardial performance and mitochondrial SOD activity in the perfused hearts (P<0.01) and caused significantly increased infarct size, LDH activity, cTnI content, expressions of p-CaMKII, ox-CaMKII and p-PLN, and also increased mitochondrial MDA content (P<0.01). KN-93 treatment at 2.5 µmol/L administered before ischemia and before reperfusion markedly attenuated such changes induced by ischemia and reperfusion (P<0.01).</p><p><b>CONCLUSION</b>CaMKII participates in myocardial IR injury in isolated rat heart, and inhibiting CaMKII can alleviate myocardial injury by relieving mitochondrial oxidation stress.</p>

2.
Journal of Southern Medical University ; (12): 633-638, 2016.
Artigo em Chinês | WPRIM | ID: wpr-263990

RESUMO

<p><b>OBJECTIVE</b>To investigate the Effect of 2,3-butanedione monoxime (BDM) on calcium paradox-induced heart injury and its underlying mechanisms.</p><p><b>METHODS</b>Thirty-two adult male SD rats were randomized into 4 groups, namely the control group, BDM treatment control group, calcium paradox group, and BDM treatment group. Isolated Sprague Dawley male rat hearts underwent Langendorff perfusion and the left ventricular pressure (LVP) and left ventricular end-diastolic pressure (LVEDP) were monitored. Left ventricular developed pressure (LVDP) was calculated to evaluate the myocardial performance. Lactate dehydrogenase (LDH) content in the coronary flow was determined. Triphenyltetrazolium chloride staining was used to measure the infarct size, and myocardial cell apoptosis was tested with TUNEL method. Western blotting was used to determine the expression of cleaved caspase-3 and cytochrome c.</p><p><b>RESULTS</b>Compared with the control group, BDM at 20 mmol/L had no effect on cardiac performance, cell death, apoptotic index or the content of LDH, cleaved caspase-3 and cytochrome c at the end of perfusion under control conditions (P>0.05). Calcium paradox treatment significantly decreased the cardiac function and the level of LVDP and induced a larger infarct size (P<0.01), an increased myocardial apoptosis index (P<0.01), and up-regulated expressions of cleaved caspase-3 and cytochrome c (P<0.01). BDM (20 mmol/L) significantly attenuated these effects induced by calcium paradox, and markedly down-regulated the levels of LVEDP and LDH (P<0.01), lowered myocardial apoptosis index, decreased the content of cleaved caspase-3 and cytochrome c (P<0.01), increased LVDP, and reduced the infarct size (P<0.01).</p><p><b>CONCLUSION</b>BDM suppresses cell apoptosis and contracture and improves heart function and cell survival in rat hearts exposed to calcium paradox, suggesting the value of BDM as an potential drug for myocardial ischemia reperfusion injur.</p>


Assuntos
Animais , Masculino , Ratos , Apoptose , Cálcio , Caspase 3 , Metabolismo , Citocromos c , Metabolismo , Diacetil , Farmacologia , Coração , Técnicas In Vitro , L-Lactato Desidrogenase , Metabolismo , Traumatismo por Reperfusão Miocárdica , Tratamento Farmacológico , Ratos Sprague-Dawley , Função Ventricular Esquerda
3.
Acta Physiologica Sinica ; (6): 697-702, 2004.
Artigo em Inglês | WPRIM | ID: wpr-352712

RESUMO

Previous studies have indicated that the thalamic nucleus submedius (Sm) and the anterior pretectal nucleus (APtN) are involved in the descending modulation of nociception. The aim of the present study was to examine whether the opioid receptors in the Sm and APtN mediated the electroacupuncture (EA)-produced analgesia. The latency of tail flick (TF) reflex induced by radiant heat was used as an index of nociceptive response. The effects of microinjection of opioid receptor antagonist naloxone (1.0 microg, 0.5 ml) into Sm or APtN on the inhibition of the TF reflex induced by EA of "Zusanli" point (St. 36) with high- (5.0 mA) and low- (0.5 mA) intensity were examined in the lightly anesthetized rats. Sm microinjection of naloxone blocked the high- but not low-intensity EA-induced inhibition of the TF reflex. In contrast, naloxone applied to APtN blocked the low- but not high-intensity EA-induced inhibition. When naloxone applied to other brain regions adjacent to Sm or APtN, the EA-induced inhibition was not influenced under either high- or low-intensity condition. These results suggest that opioid receptors in Sm are involved in mediating the analgesia by high-intensity EA for exciting small (A-delta and C group) afferent fibers, while opioid receptors in APtN are involved in mediating the analgesia induced by low-intensity EA for only exciting large (A-beta) afferent fibers.


Assuntos
Animais , Ratos , Analgesia por Acupuntura , Eletroacupuntura , Naloxona , Farmacologia , Antagonistas de Entorpecentes , Nociceptores , Fisiologia , Medição da Dor , Receptores Opioides , Fisiologia , Núcleos Talâmicos , Fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA