Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Adicionar filtros








Intervalo de ano
1.
Kidney Research and Clinical Practice ; : 329-341, 2017.
Artigo em Inglês | WPRIM | ID: wpr-143318

RESUMO

BACKGROUND: Soluble epoxide hydrolase (sEH) expressed by endothelial cells catalyzes the metabolism of epoxyeicosatrienoic acids (EETs), which are vasoactive agents. METHODS: We used a unilateral ureteral obstruction mouse model of kidney fibrosis to determine whether inhibition of sEH activity reduces fibrosis, the final common pathway for chronic kidney disease. RESULTS: sEH activity was inhibited by continuous release of the inhibitor 12-(3-adamantan-1-ylureido)-dodecanoic acid (AUDA) for 1 or 2 weeks. Treatment with AUDA significantly ameliorated tubulointerstitial fibrosis by reducing fibroblast mobilization and enhancing endothelial cell activity. In an in vitro model of endothelial-to-mesenchymal transition (EndMT) using human vascular endothelial cells (HUVECs), AUDA prevented the morphologic changes associated with EndMT and reduced expression of fibroblast-specific protein 1. Furthermore, HUVECs activated by AUDA prevented the epithelial-to-mesenchymal transition (EMT) of tubular epithelial cells in a co-culture system. CONCLUSION: Our findings suggest that regulation of sEH is a potential target for therapies aimed at delaying the progression of kidney fibrosis by inhibiting EndMT and EMT.


Assuntos
Animais , Humanos , Camundongos , Técnicas de Cocultura , Células Endoteliais , Células Epiteliais , Transição Epitelial-Mesenquimal , Fibroblastos , Fibrose , Técnicas In Vitro , Rim , Metabolismo , Insuficiência Renal Crônica , Obstrução Ureteral
2.
Kidney Research and Clinical Practice ; : 329-341, 2017.
Artigo em Inglês | WPRIM | ID: wpr-143311

RESUMO

BACKGROUND: Soluble epoxide hydrolase (sEH) expressed by endothelial cells catalyzes the metabolism of epoxyeicosatrienoic acids (EETs), which are vasoactive agents. METHODS: We used a unilateral ureteral obstruction mouse model of kidney fibrosis to determine whether inhibition of sEH activity reduces fibrosis, the final common pathway for chronic kidney disease. RESULTS: sEH activity was inhibited by continuous release of the inhibitor 12-(3-adamantan-1-ylureido)-dodecanoic acid (AUDA) for 1 or 2 weeks. Treatment with AUDA significantly ameliorated tubulointerstitial fibrosis by reducing fibroblast mobilization and enhancing endothelial cell activity. In an in vitro model of endothelial-to-mesenchymal transition (EndMT) using human vascular endothelial cells (HUVECs), AUDA prevented the morphologic changes associated with EndMT and reduced expression of fibroblast-specific protein 1. Furthermore, HUVECs activated by AUDA prevented the epithelial-to-mesenchymal transition (EMT) of tubular epithelial cells in a co-culture system. CONCLUSION: Our findings suggest that regulation of sEH is a potential target for therapies aimed at delaying the progression of kidney fibrosis by inhibiting EndMT and EMT.


Assuntos
Animais , Humanos , Camundongos , Técnicas de Cocultura , Células Endoteliais , Células Epiteliais , Transição Epitelial-Mesenquimal , Fibroblastos , Fibrose , Técnicas In Vitro , Rim , Metabolismo , Insuficiência Renal Crônica , Obstrução Ureteral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA