Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Adicionar filtros








Intervalo de ano
1.
Acta Pharmaceutica Sinica ; (12): 812-818, 2018.
Artigo em Chinês | WPRIM | ID: wpr-779941

RESUMO

Jasmonic acid (JA) can promote the biosynthesis of artemisinin.To have an insight into the JA signaling in Artemisia annua,two new genes belonging to JAZ family,namely AaJAZ5 and AaJAZ6,were cloned from Artemisia annua,which might be the negative regulators involved in the JA signaling pathway.Bioinformatic analysis showed that AaJAZ5 and AaJAZ6 contained the conserved domains of ZIM and Jas specific to JAZ family.According to tissue profile analysis,AaJAZ5 had the highest expression level in leaf and AaJAZ6 had the highest expression level in root.The expression levels of both AaJAZ5 and AaJAZ6 were markedly elevated by methyl jasmonate and mechanical wounding.The BiFC results indicated that AaJAZ5,as well as AaJAZ6,physically interacted with AaMYC2.Importantly,only AaJAZ5 could interact with AaCOI1.The interaction assays given by BiFC suggested that AaJAZ5 might play a crucial role in JA signaling.This study facilitated the further analysis of the functional divergence of JAZ-family members and the understanding of molecular mechanism on JA signaling to regulate the artemisinin biosynthesis.

2.
Acta Pharmaceutica Sinica ; (12): 1791-2016.
Artigo em Chinês | WPRIM | ID: wpr-779373

RESUMO

Artemisinin is the first choice for malaria treatment. The plastidial MEP pathway provides 5-carbon precursors (IPP and its isomer DMAPP) for the biosynthesis of isoprenoid (including artemisinin). Hydroxy-2-methyl-2-(E)-butenyl 4-diphosphate reductase (HDR) is the last enzyme involved in the MEP pathway, which catalyzes HMBPP to form IPP and DMAPP. In this study, we isolated the full-length cDNA of HDR from Artemisia annua L. (AaHDR2) and performed functional analysis. According to gene expression analysis of AaHDR2 (GenBank:KX058541) and AaHDR1 reported ever (GenBank:ADC84348.1) by qPCR, we found that AaHDR1 and AaHDR2 had much higher expression level in trichomes than that in roots, stems, leaves and flowers. AaHDR2 had much higher expression level in flowers than that in leaves. Further, the plant hormones such as MeJA and ABA respectively up-regulated the expression level of AaHDR1 and AaHDR2 significantly, but GA3 up-regulated the expression level of AaHDR2 only. The gene expression analysis of AaHDR1 and AaHDR2 showed that AaHDR2 had a greater contribution than AaHDR1 to isoprenoid biosynthesis (including artemisinin). We used AaHDR2 for the following experiments. Bioinformatic analysis indicated that AaHDR2 belonged to the HDR family and the functional complementation assay showed that AaHDR2 did have the enzymatic function of HDR, using E. coli mutant MG1655araHDR as host cell. The subcellular localization assay showed that AaHDR2 fused with GFP at its N-terminal specifically targeted in chloroplasts. Finally, AaHDR2 was overexpressed in Arabidopsis thaliana. The AaHDR2-overexpressing plants produced the isoprenoids including chlorophyll a, chlorophyll b and carotenoids at significantly higher levels than the wild-type Arabidopsis plants. In summary, AaHDR2 might be a candidate gene for genetic improvement of the isoprenoid biosynthesis.

3.
Acta Pharmaceutica Sinica ; (12): 1913-2016.
Artigo em Chinês | WPRIM | ID: wpr-779351

RESUMO

Atropa belladonna L. is the commercial plant material for production of tropane alkaloids, including hyoscyamine and scopolamine. The wild-type Atropa belladonna is characterized by the hyoscyaminerich chemotype, in which the hyoscyamine content is much higher than the scopolamine content. It is the common goal for the pharmaceutical industry to increase the content of scopolamine in A. belladonna. Based on the T0 progeny of transgenic A. belladonna with NtPMT and HnH6H overexpression, T1 progeny of transgenic A. belladonna were obtained through self-pollination and used in a field trial. The 461 bp fragment of NtPMT and the 1 077 bp HnH6H were simultaneously expressed from T1 progeny of transgenic A. belladonna, but were not obtained from the wild-type A. belladonna. At the transcription level, the expression of NtPMT and HnH6H were detected in T1 progeny of transgenic A. belladonna, but were not detected in the wild-type plants. Further, the alkaloids were analyzed by HPLC. In the stems and leaves of T1 progeny of transgenic A. belladonna, hyoscyamine was not detected and scopolamine was detected at very high levels; in the stems and leaves of wild-type A. belladonna, hyoscyamine was detected at much higher levels. In the leaves of T1 progeny of transgenic A. belladonna, the content of scopolamine was 15-36 folds higher than that of wildtype leaves; in the stems of T1 progeny of transgenic A. belladonna, the scopolamine content was 37-108 folds higher than that of wild-type stems. In conclusion, overexpression of NtPMT and HnH6H greatly enhanced conversion of hyoscyamine into high-value scopolamine and improved the commercial value of A. belladonna.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA