Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Radiation Oncology Journal ; : 226-232, 2015.
Artigo em Inglês | WPRIM | ID: wpr-73634

RESUMO

PURPOSE: Toxicity of mucosa is one of the major concerns of radiotherapy (RT), when a target tumor is located near a mucosal lined organ. Energy of photon RT is transferred primarily by secondary electrons. If these secondary electrons could be removed in an internal cavity of mucosal lined organ, the mucosa will be spared without compromising the target tumor dose. The purpose of this study was to present a RT dose reduction in near target inner-surface (NTIS) of internal cavity, using Lorentz force of magnetic field. MATERIALS AND METHODS: Tissue equivalent phantoms, composed with a cylinder shaped internal cavity, and adjacent a target tumor part, were developed. The phantoms were irradiated using 6 MV photon beam, with or without 0.3 T of perpendicular magnetic field. Two experimental models were developed: single beam model (SBM) to analyze central axis dose distributions and multiple beam model (MBM) to simulate a clinical case of prostate cancer with rectum. RT dose of NTIS of internal cavity and target tumor area (TTA) were measured. RESULTS: With magnetic field applied, bending effect of dose distribution was visualized. The depth dose distribution of SBM showed 28.1% dose reduction of NTIS and little difference in dose of TTA with magnetic field. In MBM, cross-sectional dose of NTIS was reduced by 33.1% with magnetic field, while TTA dose were the same, irrespective of magnetic field. CONCLUSION: RT dose of mucosal lined organ, located near treatment target, could be modulated by perpendicular magnetic field.


Assuntos
Vértebra Cervical Áxis , Campos Magnéticos , Modelos Teóricos , Mucosa , Neoplasias da Próstata , Lesões por Radiação , Radioterapia , Reto
2.
Radiation Oncology Journal ; : 89-97, 2015.
Artigo em Inglês | WPRIM | ID: wpr-129488

RESUMO

PURPOSE: To evaluate the treatment results in early stage non-small cell lung cancer patients who have undergone fiducial-less CyberKnife radiosurgery (CKRS). MATERIALS AND METHODS: From June 2011 to November 2013, 58 patients underwent CKRS at Asan Medical Center for stage I lung cancer. After excluding 14 patients, we retrospectively reviewed the records of the remaining 44 patients. All analyses were performed using SPSS ver. 21. RESULTS: The median age at diagnosis was 75 years. Most patients had inoperable primary lung cancer with a poor pulmonary function test with comorbidity or old age. The clinical stage was IA in 30 patients (68.2%), IB in 14 (31.8%). The mean tumor size was 2.6 cm (range, 1.2 to 4.8 cm), and the tumor was smaller than 2 cm in 12 patients (27.3%). The radiation dose given was 48-60 Gy in 3-4 fractions. In a median follow-up of 23.1 months, local recurrence occurred in three patients (2-year local recurrence-free survival rate, 90.4%) and distant metastasis occurred in 13 patients. All patients tolerated the radiosurgery well, only two patients developing grade 3 dyspnea. The most common complications were radiation-induced fibrosis and pneumonitis. Eight patients died due to cancer progression. CONCLUSION: The results showed that fiducial-less CKRS shows comparable local tumor control and survival rates to those of LINAC-based SABR or CKRS with a fiducial marker. Thus, fiducial-less CKRS using Xsight lung tracking system can be effectively and safely performed for patients with medically inoperable stage I non-small cell lung cancer without any risk of procedure-related complication.


Assuntos
Humanos , Carcinoma Pulmonar de Células não Pequenas , Comorbidade , Diagnóstico , Dispneia , Fibrose , Marcadores Fiduciais , Seguimentos , Pulmão , Neoplasias Pulmonares , Metástase Neoplásica , Pneumonia , Radiocirurgia , Recidiva , Testes de Função Respiratória , Estudos Retrospectivos , Taxa de Sobrevida
3.
Radiation Oncology Journal ; : 89-97, 2015.
Artigo em Inglês | WPRIM | ID: wpr-129473

RESUMO

PURPOSE: To evaluate the treatment results in early stage non-small cell lung cancer patients who have undergone fiducial-less CyberKnife radiosurgery (CKRS). MATERIALS AND METHODS: From June 2011 to November 2013, 58 patients underwent CKRS at Asan Medical Center for stage I lung cancer. After excluding 14 patients, we retrospectively reviewed the records of the remaining 44 patients. All analyses were performed using SPSS ver. 21. RESULTS: The median age at diagnosis was 75 years. Most patients had inoperable primary lung cancer with a poor pulmonary function test with comorbidity or old age. The clinical stage was IA in 30 patients (68.2%), IB in 14 (31.8%). The mean tumor size was 2.6 cm (range, 1.2 to 4.8 cm), and the tumor was smaller than 2 cm in 12 patients (27.3%). The radiation dose given was 48-60 Gy in 3-4 fractions. In a median follow-up of 23.1 months, local recurrence occurred in three patients (2-year local recurrence-free survival rate, 90.4%) and distant metastasis occurred in 13 patients. All patients tolerated the radiosurgery well, only two patients developing grade 3 dyspnea. The most common complications were radiation-induced fibrosis and pneumonitis. Eight patients died due to cancer progression. CONCLUSION: The results showed that fiducial-less CKRS shows comparable local tumor control and survival rates to those of LINAC-based SABR or CKRS with a fiducial marker. Thus, fiducial-less CKRS using Xsight lung tracking system can be effectively and safely performed for patients with medically inoperable stage I non-small cell lung cancer without any risk of procedure-related complication.


Assuntos
Humanos , Carcinoma Pulmonar de Células não Pequenas , Comorbidade , Diagnóstico , Dispneia , Fibrose , Marcadores Fiduciais , Seguimentos , Pulmão , Neoplasias Pulmonares , Metástase Neoplásica , Pneumonia , Radiocirurgia , Recidiva , Testes de Função Respiratória , Estudos Retrospectivos , Taxa de Sobrevida
4.
Korean Journal of Medical Physics ; : 291-297, 2010.
Artigo em Inglês | WPRIM | ID: wpr-16374

RESUMO

This study examined the dosimetric influence of implanted gold markers in proton therapy and the effects of their positions in the spread-out Bragg peak (SOBP) proton beam. The implanted cylindrical gold markers were 3 mm long and 1.2 mm in diameter. The dosimetric influence of the gold markers was determined with markers at various locations in a proton-beam field. Spatial dose distributions were measured using a three-dimensional moving water phantom and a stereotactic diode detector with an effective diameter of 0.5 mm. Also, a film dosimetry was performed using Gafchromic External Beam Treatment (EBT) film. The GEANT4 simulation toolkit was used for Monte-Carlo simulations to confirm the measurements and to construct the dose-volume histogram with implanting markers. Motion data were obtained from the portal images of 10 patients to investigate the effect of organ motions on the dosimetric influence of markers in the presence of a rectal balloon. The underdosed volume due to a single gold marker, in which the dose was less than 95% of a prescribed amount, was 0.15 cc. The underdosed volume due to the presence of a gold marker is much smaller than the target volume. However, the underdosed volume is inside the gross tumor volume and is not smeared out due to translational prostate motions. The positions of gold markers and the conditions of the proton-beam field give different impacts on the dose distribution of a target with implanted gold markers, and should be considered in all clinical proton-based therapies.


Assuntos
Humanos , Dosimetria Fotográfica , Próstata , Neoplasias da Próstata , Terapia com Prótons , Prótons , Carga Tumoral , Água
5.
Korean Journal of Medical Physics ; : 37-42, 2009.
Artigo em Coreano | WPRIM | ID: wpr-88369

RESUMO

Proton therapy facility, which is recently installed at National Cancer Center in Korea, generally produces a large amount of radiation near cyclotron due to the secondary particles and radioisotopes caused by collision between proton and nearby materials during the acceleration. Although the level of radiation by radioisotope decreases in length of time, radiation exposure problem still exists since workers are easily exposed by a low level of radiation for a long time due to their job assignment for maintenance or repair of the proton facility. In this paper, the working environment near cyclotron, where the highest radiation exposure is expected, was studied by measuring the degree of radiation and its duration for an appropriate level of protective action guide. To do this, we measured the radiation change in the graphite based energy degrader, the efficiency of transmitted beam and relative activation degree of the transmission beam line. The results showed that while the level of radiation exposure around cyclotron and beam line during the operation is much higher than the other radiation therapy facilities, the radiation exposure rate per year is under the limit recommended by the law showing 1~3 mSv/year.


Assuntos
Aceleração , Ciclotrons , Raios gama , Grafite , Jurisprudência , Coreia (Geográfico) , Terapia com Prótons , Prótons , Radioisótopos
6.
Korean Journal of Medical Physics ; : 35-41, 2008.
Artigo em Coreano | WPRIM | ID: wpr-203478

RESUMO

The main benefit of proton therapy over photon beam radiotherapy is the absence of exit dose, which offers the opportunity for highly conformal dose distributions to target volume while simultaneously irradiating less normal tissue. For proton beam therapy two patient specific beam modifying devices are used. The aperture is used to shape the transverse extension of the proton beam to the shape of the tumor target and a patient-specific compensator attached to the block aperture when required and used to modify the beam range as required by the treatment plan for the patient. A block of range shifting material, shaped on one face in such a way that the distal end of the proton field in the patient takes the shape of the distal end of the target volume. The mechanical quality assurance of range compensator is an essential procedure to confirm the 3 dimensional patient-specific dose distributions. We proposed a new quality assurance method for range compensator based on image processing using X-ray tube of proton therapy treatment room. The depth information, boundaries of each depth of plan compensatorfile and x-ray image of compensator were analyzed and presented over 80% matching results with proposed QA program.


Assuntos
Humanos , Terapia com Prótons , Prótons
7.
Korean Journal of Medical Physics ; : 89-94, 2008.
Artigo em Coreano | WPRIM | ID: wpr-7202

RESUMO

TomoTherapy has a merit to treat cancer with Intensity modulated radiation and combines precise 3-D imaging from computerized tomography (CT scanning) with highly targeted radiation beams and rotating beamlets. In this paper, we comparing the dose distribution between TomoTherapy and linear accelerator based intensity modulated radiotherapy (IMRT) for 10 Head & Neck patients using TomoTherapy which is newly installed and operated at National Cancer Center since Sept. 2006. Furthermore, we estimate how the homogeneity and Normal Tissue Complication Probability (NTCP) are changed by motion of target. Inverse planning was carried out using CadPlan planning system (CadPlan R.6.4.7, Varian Medical System Inc. 3100 Hansen Way, Palo Alto, CA 94304-1129, USA). For each patient, an inverse IMRT plan was also made using TomoTherapy Hi-Art System (Hi-Art2_2_4 2.2.4.15, TomoTherapy Incorporated, 1240 Deming Way, Madson, WI 53717-1954, USA) and using the same targets and optimization goals. All TomoTherapy plans compared favorably with the IMRT plans regarding sparing of the organs at risk and keeping an equivalent target dose homogeneity. Our results suggest that TomoTherapy is able to reduce the normal tissue complication probability (NTCP) further, keeping a similar target dose homogeneity.


Assuntos
Humanos , Cabeça , Imageamento Tridimensional , Pescoço , Órgãos em Risco , Aceleradores de Partículas , Radioterapia de Intensidade Modulada
8.
Korean Journal of Medical Physics ; : 226-232, 2007.
Artigo em Inglês | WPRIM | ID: wpr-105630

RESUMO

We studied a Monte Carlo simulation of the proton beam delivery system at the National Cancer Center (NCC) using the Geant4 Monte Carlo toolkit and tested its feasibility as a dose verification framework. The Monte Carlo technique for dose calculation methodology has been recognized as the most accurate way for understanding the dose distribution in given materials. In order to take advantage of this methodology for application to externalbeam radiotherapy, a precise modeling of the nozzle elements along with the beam delivery path and correct initial beam characteristics are mandatory. Among three different treatment modes, double/single.scattering, uniform scanning and pencil beam scanning, we have modeled and simulated the double.scattering mode for the nozzle elements, including all components and varying the time and space with the Geant4.8.2 Monte Carlo code. We have obtained simulation data that showed an excellent correlation to the measured dose distributions at a specific treatment depth. We successfully set up the Monte Carlo simulation platform for the NCC proton therapy facility. It can be adapted to the precise dosimetry for therapeutic proton beam use at the NCC. Additional Monte Carlo work for the full proton beam energy range can be performed.


Assuntos
Terapia com Prótons , Prótons , Radioterapia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA