Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Adicionar filtros








Intervalo de ano
1.
Protein & Cell ; (12): 348-356, 2014.
Artigo em Inglês | WPRIM | ID: wpr-757487

RESUMO

During virus infection, viral RNAs and mRNAs function as blueprints for viral protein synthesis and possibly as pathogen-associated molecular patterns (PAMPs) in innate immunity. Here, considering recent research progress in microRNAs (miRNAs) and competitive endogenous RNAs (ceRNAs), we speculate that viral RNAs act as sponges and can sequester endogenous miRNAs within infected cells, thus cross-regulating the stability and translational efficiency of host mRNAs with shared miRNA response elements. This cross-talk and these reciprocal interactions between viral RNAs and host mRNAs are termed "competitive viral and host RNAs" (cvhRNAs). We further provide recent experimental evidence for the existence of cvhRNAs networks in hepatitis B virus (HBV), as well as Herpesvirus saimiri (HVS), lytic murine cytomegalovirus (MCMV) and human cytomegalovirus (HCMV) infections. In addition, the cvhRNA hypothesis also predicts possible cross-regulation between host and other viruses, such as hepatitis C virus (HCV), HIV, influenza virus, human papillomaviruses (HPV). Since the interaction between miRNAs and viral RNAs also inevitably leads to repression of viral RNA function, we speculate that virus may evolve either to employ cvhRNA networks or to avoid miRNA targeting for optimal fitness within the host. CvhRNA networks may therefore play a fundamental role in the regulation of viral replication, infection establishment, and viral pathogenesis.


Assuntos
Animais , Humanos , Vírus de DNA , Genética , Fisiologia , Interações Hospedeiro-Patógeno , Fisiologia , MicroRNAs , Metabolismo , Vírus de RNA , Genética , Fisiologia , RNA Mensageiro , Metabolismo , RNA Viral , Metabolismo , Viroses , Alergia e Imunologia , Virologia , Replicação Viral
2.
Protein & Cell ; (12): 364-371, 2012.
Artigo em Inglês | WPRIM | ID: wpr-757263

RESUMO

As the most abundant liver-specific microRNA, microRNA-122 (miR-122) is involved in various physiological processes in hepatic function as well as in liver pathology. There is now compelling evidence that miR-122, as a regulator of gene networks and pathways in hepatocytes, plays a central role in diverse aspects of hepatic function and in the progress of liver diseases. This liver-enriched transcription factors-regulated miRNA promotes differentiation of hepatocytes and regulates lipid metabolism. With regard to liver diseases, miR-122 was shown to stimulate hepatitis C virus (HCV) replication through a unique and unusual interaction with two binding sites in the 5'-UTR of HCV genome to mediate the stability of the viral RNA, whereas inhibit the expression and replication of hepatitis B virus (HBV) by a miR-122-cylin G1/p53-HBV enhancer regulatory pathway. In addition, miR-122 acts as a suppressor of cell proliferation and malignant transformation of hepatocytes with remarkable tumor inhibition activity. Notably, a clinical trial targeting miR-122 with the anti-miR-122 oligonucleotides miravirsen, the first miRNA targeted drug, has been initiated for treatment of HCV infection. With further understanding of the comprehensive roles of miR-122 in hepatic functions and the mechanisms involved in miR-122 down-regulation in chronic hepatitis or hepatocellular carcinoma, miR-122 appears to be a promising candidate for effective therapeutic approaches against tumor and infectious diseases.


Assuntos
Humanos , Metabolismo dos Lipídeos , Genética , Fígado , Metabolismo , Hepatopatias , Genética , MicroRNAs , Genética , Metabolismo , Modelos Biológicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA