Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Adicionar filtros








Intervalo de ano
1.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 9-18, 2022.
Artigo em Chinês | WPRIM | ID: wpr-940755

RESUMO

ObjectiveTo investigate the protective effect of Liuwei Dihuangwan on neurovascular injury in SAMP8 mice. MethodThe Alzheimer's disease (AD) model with insufficiency of kidney essence was induced in 75 SAMP8 mice aging 6 months. The model mice were divided into model group, positive control group (donepezil hydrochloride, 0.747 mg·kg-1·d-1), and high-, medium-, and low-dose Liuwei Dihuangwan groups (2.700, 1.350, 0.675 g·kg-1·d-1), with 15 mice in each group. Fifteen SAMR1 mice were assigned to a normal control group. All mice were administered continuously for 2 months. The spatial memory of mice was tested by the Morris water maze. Hematoxylin-eosin (HE) staining was used to observe the pathological changes in the hippocampus and cortex of brain tissues. The immunohistochemical method (IHC) was used to detect the deposition of amyloid β-protein (Aβ) and the expression of von Willebrand factor (vWF) and CD34 in the hippocampus and cortex of brain tissues. Electron microscopy was used to observe the ultrastructural changes in cerebral microvessels. Western blot was used to detect the protein expression levels of the receptor of advanced glycation endproduct (RAGE), low-density lipoprotein receptor-related protein 1 (LRP1), vascular endothelial growth factor A (VEGF-A), and P-selection in the hippocampus and cortex of brain tissues. ResultCompared with the normal control group, the model group showed prolonged escape latency and swimming distance (P<0.01), increased number of glial cells, decreased number of nerve cells, blurred tight junctions or enlarged gap of the brain microvascular endothelial cells, severely injured membrane structure, swollen mitochondria of endothelial cells, ruptured membrane, massive dissolution in cristae, increased protein expression of Aβ and vWF in the hippocampus and cortex (P<0.01), reduced protein expression of CD34 (P<0.05), elevated protein expression of RAGE and P-selection in the cortex (P<0.01), and decreased protein expression level of LRP1 and VEGF-A (P<0.01). Compared with the model group, the Liuwei Dihuangwan groups showed shortened escape latency and swimming distance (P<0.05), reduced number of glial cells in the cortex and hippocampus, increased number of microvessels in the cortex, clear double-layer membrane structure in tight junctions between the microvascular endothelial cells, increased number of mitochondria with intact membrane and recovered mitochondrial cristae, decreased protein expression of Aβ, vWF, RAGE, and P-selection in the hippocampus and cortex (P<0.05), and increased protein expression of CD34, LRP1, and VEGF-A (P<0.05). ConclusionLiuwei Dihuangwan can regulate Aβ metabolism through the RAGE/LRP1 receptor system and promote cerebral microvascular angiogenesis by inhibiting vWF expression and increasing VEGF-A and CD34, thereby improving cerebral microvascular injury in SAMP8 mice.

2.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 1-8, 2022.
Artigo em Chinês | WPRIM | ID: wpr-940720

RESUMO

ObjectiveTo investigate the effect of Liuwei Dihuangwan on memory function of senescence-accelerated mouse prone 8 (SAMP8) mice by regulating autophagy through the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt)/forkhead box O3a (FoxO3a) pathway. MethodSix male senescence-accelerated mouse resistant 1 (SAMR1) mice of SPF grade aging 6 months were assigned to a normal group, and 24 male SAMP8 mice of SPF grade aging 6 months were randomly divided into a model group, a donepezil group (0.747 mg·kg-1), and high- and low-dose Liuwei Dihuangwan groups (2.700 and 1.350 g·kg-1), with 6 mice in each group. The mice were treated with drugs by gavage for 2 months. Morris water maze was used to detect the learning and memory abilities of mice in each group. Nissl staining was used to observe the neurons in the cortex and hippocampus. The positive expression of microtubule-associated protein 1 light chain 3B (LC3B) in the cortex and hippocampus was detected by immunohistochemistry (IHC). Western blot was used to detect the protein expression of the mammalian ortholog of yeast ATG6 (Beclin-1), B cell lymphoma-2 (Bcl-2), autophagy-related gene 5 (ATG5), cysteinyl aspartate-specific protease 3 (Caspase-3), Caspase-9, Akt, p-Akt, FoxO3a, and p-FoxO3a. ResultCompared with the normal group, the model group showed prolonged escape latency (P<0.05,P<0.01), reduced number of platform crossings and the residence time in the target quadrant (P<0.01), decreased neurons with reduced volume and dispersed distribution in the cortex and hippocampus, increased positive expression of LC3B (P<0.01), elevated expression of Beclin-1 and ATG5 in the cortex (P<0.01), declined Bcl-2 expression (P<0.01), up-regulated Caspase-3 and Caspase-9 expression (P<0.01), and decreased expression levels of p-Akt/Akt and p-FoxO3a/FoxO3a (P<0.01). Compared with the model group, the donepezil group and the Liuwei Dihuangwan groups showed shortened 3 d escape latency (P<0.05,P<0.01), increased number of platform crossings (P<0.01), and prolonged residence time in the target quadrant (P<0.01). In the donepezil group, the number of neurons in the cortex and hippocampus was increased. In the Liuwei Dihuangwan groups, the number of neurons and Nissl bodies increased with denser distribution and lower degree of cell damage. The positive expression of LC3B in the cortex and hippocampus was decreased in the donepezil group and Liuwei Dihuangwan groups (P<0.01). The expression of Beclin-1 was decreased in the Liuwei Dihuangwan groups (P<0.01). The expression of ATG5 was decreased in the donepezil group and the low-dose Liuwei Dihuangwan group (P<0.01). The donepezil group and the Liuwei Dihuangwan groups showed the increased expression level of Bcl-2 in the cortex (P<0.01), decreased expression level of Caspase-3 (P<0.01), reduced expression level of Caspase-9 (P<0.05,P<0.01), and elevated expression levels of p-Akt/Akt and p-FoxO3a/FoxO3a (P<0.01). ConclusionLiuwei Dihuangwan can effectively improve the learning and memory abilities of the SAMP8 mice and protect neurons. Its mechanism may be related to the regulation of the PI3K/Akt/FoxO3a signaling pathway, down-regulation of the expression of ATG5, Beclin-1, and LC3B, and the inhibition of apoptosis.

3.
Chinese Journal of Immunology ; (12): 1485-1490, 2016.
Artigo em Chinês | WPRIM | ID: wpr-504372

RESUMO

Objective:To prepare and identify the mouse anti-human monoclonal antibodies ( mAbs) using leukocytes as im-munogens. Methods: The mice were immunized using human peripheral blood leukocytes. Then, use of B lymphocyte hybridoma technology preparation of mAbs,followed screening by immunocytochemistry and limited dilution. The secreted mAbs were identified by immunoprecipitation,mass spectrometry,Western blot,ELISA and immunohistochemistry. Results:The 35 positive polyclonal cells were obtained,of which 11 strains secreted mAbs against S100A9. And one strain was used to prepare monoclonal antibody. The purified mAb against S100A9 were purified and identified as IgG1 subtype,with the titer,purity and affinity constant was 1∶3. 18×105,95% and 3. 54×108 L/mol,respectively. This mAb generally had 0. 12% crossed reactivity to S100A8 ,and showed little or no cross reactivity to S100A12 and S100A13. The prepared monoclonal antibodies can specifically recognizes the S100A9 antigen in human breast cancer tissues. Conclusion:Successful preparation of mAb against S100A9,which can secrete specific mAb against S100A9 protein with high titers and specificity have been established successfully,which laid the foundation for the immunology application.

4.
Chinese Journal of Tissue Engineering Research ; (53): 8120-8125, 2015.
Artigo em Chinês | WPRIM | ID: wpr-483475

RESUMO

BACKGROUND:When acute cerebral ischemia attacks, matrix metaloproteinases (MMPs) lead to the occurrence of cerebral edema through degrading the extracelular matrix, breaking the close connection between endothelial cels, increasing the permeability of capilaries, and destroying the blood brain barrier. OBJECTIVE: From the aspects of MMPs and extracelular matrix, to discuss the therapeutic effects ofbuyang huanwu decoction combined with bone marrow mesenchymal stem cel (BMSCs) transplantation on cerebral ischemia-reperfusion injury. METHODS:A total of 96 Sprague-Dawley rats were randomly divided into model group, tissue inhibitor of MMPs-1 (TIMP-1) group, TIMP-1+BMSCs group (BMSCs group) andbuyang huanwu decoction+BMSCs+TIMP-1 group (combined group that was divided into four subgroups, 12-, 24-, 36-, 48-hour groups). Rat models of cerebral ischemia-reperfusion were constructed, and TIMP-1 and BMSCs were injected to the brain of rats by a microinjector in a stereotaxic apparatus. Rats in the combined group were given buyang huanwu decoction (10 mL/kg), and rats in the other groups were given the same volume of normal saline at 7 days before surgery. After 10 days of administration, serum samples and brain tissues were colected to determine MMP-2 and MMP-9 levels using ELISA and to detect MMP-9 activity using gelatinases spectrometry method. RESULTS AND CONCLUSION:Compared with the model group, the levels of MMP-2 and MMP-9 in the serum and MMP-9 activity in the brain were decreased in the other groups to different extents, especialy the levels of MMP-9 (P < 0.05). Compared with the BMSCs group, the levels of MMP-2 and MMP-9 in serum as wel as activities of MMP-9 and pro-MMP-9 in the brain were decreased significantly in the combined group at 36 and 48 hours after treatment (P< 0.01). The results show that thebuyang huanwu decoction can be mutualy cooperated with TIMP-1 to inhibit the degradation of extracelular matrix induced by MMP-2 and MMP- 9, repair the damaged blood brain barrier, prevent and cure cerebral edema after ischemia.

5.
Chinese Journal of Tissue Engineering Research ; (53): 5981-5987, 2013.
Artigo em Chinês | WPRIM | ID: wpr-437465

RESUMO

BACKGROUND:Cerebral ischemia often occurs in underlying pathological conditions, such as hypertension, hyperlipidemia and diabetes. Therefore, it is of great significance to construct a cerebral ischemia rat model with hyperlipidemia and to study the effect of basic pathological changes on the cerebral ischemia. OBJECTIVE:To observe the brain tissue pathological changes of rat models with coexistence of hyperlipidemia and cerebral ischemia, and the effect of hyperlipidmia on cerebral ischemia. METHODS:The rats were fed with high-fat diet to establish the hyperlipidmia models, and then focal cerebral ischemia models were prepared with suture method. At 3 and 7 days after modeling, the 2,3,5-triphenyltetrazolium chloride staining was used to observe the volume of brain tissue ischemia, and hematoxylin-eosin staining was performed to observe pathological change of the margin of the brain tissue ischemia zone. RESULTS AND CONCLUSION:2,3,5-Triphenyltetrazolium chloride staining staining results showed that the volume of cerebral ischemia was significantly reduced in the hyperlipidemia+cerebral ischemia 7 day group. Hematoxylin-eosin staining results showed there was typical ischemic changes in al the cerebral ischemia models, and the number of microglial cel s after cerebral ischemia for 7 days was significantly smal er than that after cerebral ischemia for 3 days, and the changes were more obvious in the hyperlipidemia+7-day cerebral ischemia group when compared with the hyperlipidemia+3-day cerebral ischemia group. Ultrastructure showed there were neuronal and glial nuclear membrane shrinkage in al the cerebral ischemia models, mitochondria cristae was disappeared completely, endothelial cel mitochondria was decreased, most of the synaptic vesicles of nerve synapse were dissolved;the damages above were improved after ischemia for 7 days, especial y hyperlipidemia+cerebral ischemia for 7 days, the neuronal degeneration and necrosis were reduced, the mitochondrial damage was repaired, the number of mitochondrial cristae was increased significantly, and the synaptic vesicles of nerve synapse were recovered significantly. The results indicate that hyperlipidemia can promote the recovery of cerebral ischemic injury, probably because the hyperlipidemia factors can activate the protection mechanism.

6.
Journal of Zhejiang Chinese Medical University ; (6)2006.
Artigo em Chinês | WPRIM | ID: wpr-559565

RESUMO

[Objective]To determine the content of Polygonum multiflorum thunb. Polysaccharide and the refined. [Methods] The sulfuric acid-phenol method was used. [Results] ?_ max = 486nm. The linear rang was 10.5~94.5?g?L -1 .And the average recovery was 101.23%(n=5,RSD=3.03%). The content of Polygonum multiflorum thunb. Polysaccharide was 14.28% and the refined was 19.03%. [Conclusion] The method was simple,rapid and reliable.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA