Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Adicionar filtros








Intervalo de ano
1.
Yonsei Medical Journal ; : 1023-1031, 2021.
Artigo em Inglês | WPRIM | ID: wpr-904274

RESUMO

Purpose@#Interleukin-37 (IL-37) is an anti-inflammatory cytokine that inhibits a broad spectrum of inflammatory responses in various human cells, including neutrophils, macrophages, and endothelial cells. The aim of this study was to identify the role of IL-37 in toll-like receptor 9 (TLR9) signaling in human macrophages. @*Materials and Methods@#Human macrophage U937 cells treated with CpG-oligonucleotides (CpG-ODN), recombinant IL-37, or dexamethasone were used in an in vitro study. IL-37 small interfering RNA (siRNA) and TLR9 siRNA were used to silence endogenous IL-37 and TLR9, respectively. Expression levels of phosphorylated nuclear factor-κB (NF-κB), IκBα, IL-37, IL-1β, tumor necrosis factor-α (TNF-α), and IL-6 protein were assessed by real-time quantitative polymerase chain reaction and Western blotting. CpG-ODN-mediated IL-37 expression stimulated by dexamethasone was detected using immunofluorescent analysis. @*Results@#U937 cells treated with CpG-ODN induced activation of the NF-κB pathway and increased the expression of the pro-inflammatory cytokines IL-1β, TNF-α, and IL-6, but reduced that of IL-37. Recombinant IL-37 attenuated phosphorylation of NF-κB and IκBα and the expression of IL-1β, TNF-α, and IL-6 stimulated by CpG-ODN. Human macrophages transfected with IL-37 siRNA augmented the expression of IL-1β, TNF-α, and IL-6 mRNA and protein in cells treated with CpG-ODN. Dexamethasone markedly inhibited expression of pro-inflammatory cytokines in U937 cells, whereas IL-37 expression was increased with the addition of dexamethasone. Inflammatory responses elicited by CpG-ODN were dependent on an MyD88-TRAF6 pathway. IL-37 inhibited CpG-ODN-induced ubiquitination of TRAF6 in U937 macrophages. @*Conclusion@#IL-37 inhibits CpG-ODN-mediated inflammatory responses through regulation of a TRAF6- NF-κB pathway in human macrophages.

2.
Yonsei Medical Journal ; : 1023-1031, 2021.
Artigo em Inglês | WPRIM | ID: wpr-896570

RESUMO

Purpose@#Interleukin-37 (IL-37) is an anti-inflammatory cytokine that inhibits a broad spectrum of inflammatory responses in various human cells, including neutrophils, macrophages, and endothelial cells. The aim of this study was to identify the role of IL-37 in toll-like receptor 9 (TLR9) signaling in human macrophages. @*Materials and Methods@#Human macrophage U937 cells treated with CpG-oligonucleotides (CpG-ODN), recombinant IL-37, or dexamethasone were used in an in vitro study. IL-37 small interfering RNA (siRNA) and TLR9 siRNA were used to silence endogenous IL-37 and TLR9, respectively. Expression levels of phosphorylated nuclear factor-κB (NF-κB), IκBα, IL-37, IL-1β, tumor necrosis factor-α (TNF-α), and IL-6 protein were assessed by real-time quantitative polymerase chain reaction and Western blotting. CpG-ODN-mediated IL-37 expression stimulated by dexamethasone was detected using immunofluorescent analysis. @*Results@#U937 cells treated with CpG-ODN induced activation of the NF-κB pathway and increased the expression of the pro-inflammatory cytokines IL-1β, TNF-α, and IL-6, but reduced that of IL-37. Recombinant IL-37 attenuated phosphorylation of NF-κB and IκBα and the expression of IL-1β, TNF-α, and IL-6 stimulated by CpG-ODN. Human macrophages transfected with IL-37 siRNA augmented the expression of IL-1β, TNF-α, and IL-6 mRNA and protein in cells treated with CpG-ODN. Dexamethasone markedly inhibited expression of pro-inflammatory cytokines in U937 cells, whereas IL-37 expression was increased with the addition of dexamethasone. Inflammatory responses elicited by CpG-ODN were dependent on an MyD88-TRAF6 pathway. IL-37 inhibited CpG-ODN-induced ubiquitination of TRAF6 in U937 macrophages. @*Conclusion@#IL-37 inhibits CpG-ODN-mediated inflammatory responses through regulation of a TRAF6- NF-κB pathway in human macrophages.

3.
Yonsei Medical Journal ; : 533-541, 2020.
Artigo | WPRIM | ID: wpr-833356

RESUMO

Purpose@#Ethanol elicits several inflammatory responses and affects the innate immune response. The aim of this study was to identify the mechanism by which ethanol affects uric acid-induced NLR family pyrin domain-containing 3 (NLRP3) inflammasome activation by regulation of aryl hydrocarbon receptor (AhR) and thioredoxin-interacting protein (TXNIP). @*Materials and Methods@#Human myeloid leukemia cells (U937 cells) were used to assess the role of ethanol in NLRP3 inflammasome activation induced by monosodium urate (MSU) crystals. Expression of target molecules, such as NLRP3 inflammasome components, AhR, and TXNIP, were measured using quantitative real-time PCR and Western blot analyses. The effect of ethanolinduced TXNIP on the NLRP3 inflammasome was assessed in human macrophages transfected with TXNIP siRNA. @*Results@#U937 cells treated with 100 mM ethanol for 24 h induced NLRP3 and interleukin (IL)-1β expression. Ethanol increased reactive oxygen species generation in a time- and dose-dependent manner. AhR mRNA expression was downregulated in U937 cells treated with 100 mM ethanol, whereas CYP1A1 mRNA expression increased. Treatment with ethanol increased NLRP3 and IL-1β mRNA and protein expression in U937 cells exposed to 1.0 mg/mL of MSU crystals for 24 h. TXNIP expression in U937 cells incubated with both 100 mM ethanol and 1.0 mg/mL of MSU crystals was significantly higher than in cells incubated with MSU crystals alone. Treatment with 100mM ethanol for 24 h downregulated NLRP3 and IL-1β expression in MSU crystal-activated U937 cells transfected with TXNIP siRNA, compared to those with scramble siRNA. @*Conclusion@#Ethanol stimulates uric acid-induced NLRP3 inflammasome activation through regression of AhR and upregulation of TXNIP.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA