Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Adicionar filtros








Intervalo de ano
1.
Korean Journal of Veterinary Research ; : 133-139, 2015.
Artigo em Inglês | WPRIM | ID: wpr-114942

RESUMO

The increasing uses of zinc oxide nanoparticles (nZnO) in industrial and personal care products raise possible danger of using nZnO in human. To determine whether ZnO induces size-dependent anomalies during embryonic organogenesis, mouse embryos on embryonic day 8.5 were cultured for 2 days under 50, 100, and 150 microg of nZnO (< 100 nm) or micro-sized ZnO (mZnO; 80 +/- 25 microm), after which the morphological changes, cumulative quantity of Zn particles, and expressions of antioxidant and apoptotic genes were investigated. Although embryos exposed to 50 microg of ZnO exhibited no defects on organogenesis, embryos exposed to over 100 microg of ZnO showed increasing anomalies. Embryos treated with 150 microg of nZnO revealed significant changes in Zn absorption level and morphological parameters including yolk sac diameter, head length, flexion, hindbrain, forebrain, branchial bars, maxillary process, mandibular process, forelimb, and total score compared to the same dose of mZnO-treated embryos. Furthermore, CuZn-superoxide dismutase, cytoplasmic glutathione peroxidase (GPx) and phospholipid hydroperoxidase GPx mRNA levels were significantly decreased, but caspase-3 mRNA level was greatly increased in nZnO-treated embryos as compared to normal control embryos. These findings indicate that nZnO has severer teratogenic effects than mZnO in developing embryos.


Assuntos
Animais , Humanos , Camundongos , Absorção , Caspase 3 , Citoplasma , Estruturas Embrionárias , Membro Anterior , Glutationa Peroxidase , Cabeça , Nanopartículas , Organogênese , Prosencéfalo , Rombencéfalo , RNA Mensageiro , Teratogênese , Saco Vitelino , Óxido de Zinco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA