Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Adicionar filtros








Intervalo de ano
1.
J Cancer Res Ther ; 2019 Jan; 15(1): 1-8
Artigo | IMSEAR | ID: sea-213388

RESUMO

Purposes: The purpose of this study was to assess the internal rectal movement and to determine the factors related to extensive internal rectal movement using sequential simulation computed tomography (CT) images. Materials and Methods: From 2010 to 2015, 96 patients receiving long-course preoperative chemoradiotherapy were included in our retrospective study. The initial simulation CT (Isim-CT) and follow-up simulation CT (Fsim-CT) for a boost were registered according to the isocenters and bony structure. The rectums on Isim-CT and Fsim-CT were compared on four different axial planes as follows: (1) lower pubis symphysis (AXVERYLOW), (2) upper pubis symphysis (AXLOW), (3) superior rectum (AXHIGH), and (4) middle of AXLOW and AXHIGH (AXMID). The involved rectum in the planning target volume was evaluated. The maximal radial distances (MRD), the necessary radius from the end of Isim-CT rectum to cover entire Fsim-CT rectum, and the common area rate (CAR) of the rectum (CAR, (Isim-CT∩Fsim-CT)/(Isim-CT)) were measured. Linear regression tests for the MRDs and logistic regression tests for the CARs were conducted. Results: The mean ± standard deviation (mm) of MRDs and CAR <80% for AXVERYLOW, AXLOW, AXMID, and AXHIGH were 2.3 ± 2.5 and 8.9%, 3.0 ± 3.7 and 17.4%, 4.0 ± 5.2 and 27.1%, and 4.1 ± 5.2 and 25%, respectively. For MRDs and CARs, a higher axial level (AXVERYLOW/AXMID-HIGH, P = 0.018 and P = 0.034, respectively), larger bladder volume (P = 0.054 and P = 0.017, respectively), smaller bowel gas extent (small/marked, P = 0.014 and P = 0.001, respectively), and increased bowel gas change (decrease/increase, both P < 0.001) in rectum were associated with extensive internal rectal movement in multivariate analyses. Conclusions: As a result of following internal rectal movement through sequential simulation CT, the rectum above the pubis symphysis needs a larger margin, and bladder volume and bowel gas should be closely observed.

2.
Indian J Exp Biol ; 2012 Mar; 50(3): 195-200
Artigo em Inglês | IMSEAR | ID: sea-145240

RESUMO

Aim of the study was to determine protective effect of triphala on radiation-induced rectal mucosal damage. Male Sprague Dawley rats (30) were divided into 5 groups. Rats in group A were sham irradiated and rats in group B underwent only irradiation. Rats in group C were administered triphala 1g/kg/day orally for 5 consecutive days before irradiation. Rats in group D and E were administered triphala 1 and 1.5 g/kg/day orally for 10 consecutive days, respectively. Rectal mucosal damage was induced by a single fraction of 12.5Gy gamma irradiation (Ir-192) on 5th day. All the rats were autopsied on 11th day and histological changes in surface epithelium, glands, and lamina propria were assessed. Proctitis showed significant improvement in surface epithelium (P<0.024), glands (P<0.000) and lamina propria (P<0.002) in group E compared to group B. Rats in group E showed significantly less change in glands (P<0.000) compared to rats in group D, All histological variables (surface epithelium, P<0.001; glands, P<0.000; lamina propria, P<0.003) compared to rats in group C. In a Tukey-b test, group E had a significantly recovered grade for glands (P<0.000) compared to groups B, C and D. Results of the present study showed that high-dose triphala improved radiation-induced damage of glands.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA