Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Adicionar filtros








Intervalo de ano
1.
Artigo em Inglês | WPRIM | ID: wpr-928959

RESUMO

OBJECTIVE@#To study the effects of total ginsenosides (TG) extract from Panax ginseng on neural stem cell (NSC) proliferation and differentiation and their underlying mechanisms.@*METHODS@#The migration of NSCs after treatment with various concentrations of TG extract (50, 100, or 200 µ g/mL) were monitored. The proliferation of NSCs was examined by a combination of cell counting kit-8 and neurosphere assays. NSC differentiation mediated by TG extract was evaluated by Western blotting and immunofluorescence staining to monitor the expression of nestin and microtubule associated protein 2 (MAP2). The GSK-3β/β-catenin pathway in TG-treated NSCs was examined by Western blot assay. The NSCs with constitutively active GSK-3β mutant were made by adenovirus-mediated gene transfection, then the proliferation and differentiation of NSCs mediated by TG were further verified.@*RESULTS@#TG treatment significantly enhanced NSC migration (P<0.01 or P<0.05) and increased the proliferation of NSCs (P<0.01 or P<0.05). TG mediation also significantly upregulated MAP2 expression but downregulated nestin expression (P<0.01 or P<0.05). TG extract also significantly induced GSK-3β phosphorylation at Ser9, leading to GSK-3β inactivation and, consequently, the activation of the GSK-3β/β-catenin pathway (P<0.01 or P<0.05). In addition, constitutive activation of GSK-3β in NSCs by the transfection of GSK-3β S9A mutant was found to significantly suppress TG-mediated NSC proliferation and differentiation (P<0.01 or P<0.05).@*CONCLUSION@#TG promoted NSC proliferation and neuronal differentiation by inactivating GSK-3β.


Assuntos
Animais , Ratos , Diferenciação Celular , Proliferação de Células , Ginsenosídeos/farmacologia , Glicogênio Sintase Quinase 3 beta/metabolismo , Células-Tronco Neurais/metabolismo , Panax , Extratos Vegetais/farmacologia , beta Catenina/metabolismo
2.
Artigo em Inglês | WPRIM | ID: wpr-287180

RESUMO

<p><b>OBJECTIVE</b>To observe the effects of water extract of Zuojin Pill ([characters: see text], ZJP) on inhibiting the growth of human gastric cancer cell line SGC-7901 and its potential mechanism.</p><p><b>METHODS</b>Effects of ZJP on SGC-7901 cells growth were determined by 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT) assay, cell apoptosis and cell cycle were determined by flow cytometry, and apoptosis induction was detected by means of DNA gel electrophoresis. The cellular mechanism of drug-induced cell death was unraveled by assaying oxidative injury level of SGC-7901 cell, mitochondrial membrane potentials, expression of apoptosis-related genes, such as B cell lymphoma/lewkmia-2 (Bcl-2), Bcl-2 associated X protein (Bax) and cleaved caspase-3 and caspase-9.</p><p><b>RESULTS</b>ZJP exerted evident inhibitory effect on SGC-7901 cells by activating production of reactive oxygen species and elevating Bax/Bcl-2 ratio in SGC-7901 cells, leading to attenuation of mitochondrial membrane potential and DNA fragmentation.</p><p><b>CONCLUSIONS</b>ZJP inhibits the cancer cell growth via activating mitochondria-dependent apoptosis pathway. ZJP can potentially serve as an antitumor agent.</p>


Assuntos
Humanos , Antineoplásicos , Farmacologia , Apoptose , Western Blotting , Linhagem Celular Tumoral , Sobrevivência Celular , Colorimetria , Ensaio Cometa , Fragmentação do DNA , Medicamentos de Ervas Chinesas , Farmacologia , Citometria de Fluxo , Membranas Mitocondriais , Espécies Reativas de Oxigênio , Metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA