Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Adicionar filtros








Intervalo de ano
1.
J Genet ; 2007 Aug; 86(2): 93-101
Artigo em Inglês | IMSEAR | ID: sea-114314

RESUMO

A cytoplasmic male sterile (CMS) line of Brassica juncea was derived by repeated backcrossing of the somatic hybrid (Diplotaxis catholica + B. juncea) to B. juncea. The new CMS line is comparable to euplasmic lines for almost all characters, except for flowers which bear slender, needle-like anthers with aborted pollen. Detailed Southern analysis revealed two copies of coxI gene in the CMS line. One copy, coxI-1 is similar to the coxI gene of B. juncea, whereas the second copy, coxI-2 is present in a novel rearranged region. Northern analysis with eight mitochondrial gene probes showed altered transcript pattern only for the coxI gene. Two transcripts of 2.0 and 2.4 kb, respectively, were detected in the CMS line. The novel 2.4 kb transcript was present in floral bud tissue but absent in the leaf tissue. In plants where male sterility broke down under high temperature during the later part of the growing season, the 2.4 kb coxI transcript was absent, which suggested its association with the CMS. The two coxI genes from the CMS line showed two amino acid changes in the coding region. The novel coxI gene showed unique repeats in the 5' region suggesting recombination of mitochondrial genomes of the two species. The possible role of the duplicated coxI gene in causing male sterility is discussed.


Assuntos
Sequência de Bases , Brassica/genética , Ciclo-Oxigenase 1/genética , Citoplasma/genética , DNA Mitocondrial/análise , Flores/genética , Duplicação Gênica , Expressão Gênica , Genoma de Planta , Células Híbridas/metabolismo , Dados de Sequência Molecular , Mostardeira/genética , Infertilidade das Plantas/genética , RNA/análise , Técnica de Amplificação ao Acaso de DNA Polimórfico , Homologia de Sequência do Ácido Nucleico
2.
J Genet ; 2006 Aug; 85(2): 133-9
Artigo em Inglês | IMSEAR | ID: sea-114342

RESUMO

We have previously reported correction of severe leaf chlorosis in the cytoplasmic male sterile Ogura (also called Ogu) Brassica juncea line carrying Ogura cytoplasm by plastid substitution via protoplast fusion. Two cybrids obtained from the fusion experiment, Og1 and Og2, were green and carried the plastid genome of B. juncea cv. RLM198. While Og1 displayed normal flower morphology comparable to that of its euplasmic B. juncea counterpart except for sterile anthers, Og2 retained homeotic-like floral modification of stamens to petal-like structures and several other floral deformities observed in the chlorotic (Ogu) B. juncea cv. RLM198 (or OgRLM). With respect to the mitochondrial genome, Og1 showed 81% genetic similarity to the fertile cultivar RLM while Og2 showed 93% similarity to OgRLM. In spite of recombination and rearrangements in the mitochondrial genomes in the cybrids, expression patterns of 10 out of 11 mitochondrial genes were similar in all the three CMS lines; the only exception was atp6, whose expression was altered. While Og1 showed normal atp6 transcript similar to that in RLM, in Og2 and OgRLM weak expression of a longer transcript was detected. These results suggest that the homeotic-like changes in floral patterning leading to petaloid stamens in Og2 and OgRLM may be associated with aberrant mitochondrial gene expression.


Assuntos
Northern Blotting , Brassica/anatomia & histologia , Citoplasma/metabolismo , Flores/anatomia & histologia , Regulação da Expressão Gênica de Plantas , Genes Homeobox , Genes Mitocondriais , Genes de Plantas , Infertilidade das Plantas/genética , Proteínas de Plantas , Polimorfismo de Fragmento de Restrição
3.
J Biosci ; 2006 Jun; 31(2): 235-46
Artigo em Inglês | IMSEAR | ID: sea-110734

RESUMO

We have generated putative promoter tagged transgenic lines in Arachis hypogaea cv JL-24 using cotyledonary node (CN) as an explant and a promoterless gus::nptII bifunctional fusion gene mediated by Agrobacterium transformation. MS medium fortified with 6-benzylaminopurine (BAP) at 4mg/l in combination with 0.1 mg/l alpha -napthaleneacetic acid (NAA) was the most effective out of the various BAP and NAA combinations tested in multiple shoot bud formation. Parameters enhancing genetic transformation viz. seedling age, Agrobacterium genetic background and co-cultivation periods were studied by using the binary vector p35SGUSINT. Genetic transformation with CN explants from 6-day-old seedlings co-cultivated with Agrobacterium GV2260 strain for 3 days resulted in high kanamycin resistant shoot induction percentage (45%); approximately 31% transformation frequency was achieved with p35S GUSINT in beta-glucuronidase (GUS) assays. Among the in vivo GUS fusions studied with promoterless gus::nptII construct, GUS-positive sectors occupied 38% of the total transient GUS percentage. We have generated over 141 putative T 0 plants by using the promoterless construct and transferred them to the field. Among these, 82 plants survived well in the green house and 5 plants corresponding to 3.54% showed stable integration of the fusion gene as evidenced by GUS, polymerase chain reaction (PCR) and Southern blot analyses. Twenty-four plants were positive for GUS showing either tissue-specific expression or blue spots in at least one plant part. The progeny of 15 T 0 plants indicated Mendelian inheritance pattern of segregation for single-copy integration. The tissue-specific GUS expression patterns were more or less similar in both T 0 and corresponding T 1 progeny plants. We present the differential patterns of GUS expression identified in the putative promoter-tagged transgenic lines in the present communication.


Assuntos
Arachis/anatomia & histologia , Cotilédone , Vetores Genéticos , Glucuronidase/genética , Fenótipo , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas , Proteínas Recombinantes de Fusão/genética , Regeneração , Rhizobium/genética , Transformação Genética
4.
J Biosci ; 2002 Sep; 27(5): 495-502
Artigo em Inglês | IMSEAR | ID: sea-111264

RESUMO

A number of factors that are known to influence genetic transformation were evaluated to optimize Agrobacterium-mediated transformation of hypocotyl explants of cauliflower variety Pusa Snowball K-1. The binary vector p35SGUSINT mobilized into Agrobacterium strain GV2260 was used for transformation and transient GUS expression was used as the basis for identifying the most appropriate conditions for transformation. Explant age, preculture period, bacterial strain and density were found to be critical determinants of transformation efficiency. Using the optimized protocol, the synthetic cryIA(b) gene was mobilized into cauliflower. Molecular analyses of transgenics established the integration and expression of the transgene. Insect bioassays indicated the effectiveness of the transgene against infestation by diamondback moth (Plutella xylostella) larvae


Assuntos
Brassica/genética , Plantas Geneticamente Modificadas , Rhizobium/genética , Transformação Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA