Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Adicionar filtros








Intervalo de ano
1.
Indian J Exp Biol ; 2014 Nov; 52(11): 1112-1121
Artigo em Inglês | IMSEAR | ID: sea-153800

RESUMO

Various parameters including explant-type, medium compositions, use of phytohormones and additives were optimized for direct and indirect regeneration of E. ochreata, a medicinal orchid under threat. Protocorm-like-bodies (PLBs) proved to be the best explants for shoot initiation, proliferation and callus induction. Murashige and Skoog’s (MS) medium containing 2.5 mg L-1 6-benzylaminopurine (BAP), 1.0 mg L-1 kinetin (Kin) and additives (adenine sulfate, arginine, citric acid, 30 mg L-1 each and 50 mg L-1 ascorbic acid) was optimal for shoot multiplication (12.1 shoots and 7.1 PLBs per explant with synchronized growth), which also produced callus. Shoot number was further increased with three successive subcultures on same media and ~40 shoots per explant were achieved after 3 cycles of 30 days each. Additives and casein hydrolysate (CH) showed advantageous effects on indirect shoot regeneration via protocorm-derived callus. Optimum indirect regeneration was achieved on MS containing additives, 500 mg L-1 CH, 2.5 mg L-1 BAP and 1.0 mg L-1 Kin with 30 PLBs and 6 shoots per callus mass (~5 mm size). The shoots were rooted (70% frequency) on one by fourth-MS medium containing 2.0 mg L-1 indole-3-butyric acid, 200 mg L-1 activated charcoal and additives. The rooted plantlets were hardened and transferred to greenhouse with 63% survival rate. Flow-cytometry based DNA content analysis revealed that the ploidy levels were maintained in in vitro regenerated plants. This is the first report for in vitro plant regeneration in E. ochreata.


Assuntos
Ácido Ascórbico/farmacologia , /farmacologia , Cromossomos de Plantas , Ácido Cítrico/farmacologia , Meios de Cultura/farmacologia , Citocininas/farmacologia , /farmacologia , Orchidaceae/genética , Orchidaceae/crescimento & desenvolvimento , Orchidaceae/fisiologia , Organoides/efeitos dos fármacos , Organoides/fisiologia , Células Vegetais/efeitos dos fármacos , Células Vegetais/fisiologia , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/crescimento & desenvolvimento , Brotos de Planta/efeitos dos fármacos , Brotos de Planta/crescimento & desenvolvimento , Plantas Medicinais/genética , Plantas Medicinais/crescimento & desenvolvimento , Plantas Medicinais/fisiologia , Ploidias , Regeneração , Rizoma/efeitos dos fármacos , Rizoma/crescimento & desenvolvimento
2.
Indian J Exp Biol ; 2012 July; 50(7): 484-490
Artigo em Inglês | IMSEAR | ID: sea-145279

RESUMO

Leaves of Withania somnifera contained more withaferin A and withanolide A than roots indicating that these compounds mainly accumulate in leaves. With an increase in age of the plant, withaferin A was enhanced with a corresponding decrease in withanolide A. Hairy root cultures were induced from leaf explants using Agrobacterium rhizogenes and the transgenic nature of hairy roots was confirmed by partial isolation and sequencing of rolB gene, which could not be amplified in untransformed plant parts. In hairy roots, withaferin A accumulated at 2, 3 and 4% but not at 6% sucrose, the highest amount being 1733 mg/g dry weight at 4% level. High and equal amounts of withaferin A and withanolide A accumulated (890 and 886 mg/g dry tissue respectively) only at 3% sucrose. Increasing concentrations of glucose enhanced withaferin A and it peaked at 5% level (3866 mg/g dry tissue). This amount is 2842 and 34% higher compared to untransformed roots and leaves (collected from 210-day-old plants) respectively. Withanolide A was detected at 5% glucose but not at other concentrations. While chitosan and nitric oxide increased withaferin A, jasmonic acid decreased it. Acetyl salicylic acid stimulated accumulation of both withaferin A and withanolide A at higher concentrations. Triadimefon, a fungicide, enhanced withaferin A by 1626 and 3061% (not detected earlier) compared to hairy and intact roots respectively.

3.
J Biosci ; 1995 Dec; 20(5): 629-636
Artigo em Inglês | IMSEAR | ID: sea-161071

RESUMO

Starch, total sugars, reducing sugars and protein contents and the specific activities of hydrolytic enzymes such as amylase, Phosphorylase, soluble acid invertase, wall-bound acid invertase, sucrose synthetase, acid and alkaline phosphatases and ribonuclease were determined in root forming, shoot forming and non-organ-forming callus cultures of tobacco. Organ-forming cultures not only showed higher amounts of the above metabolites but also higher enzyme activities compared to non-organ-forming cultures. The activities of these enzymes in relation to organogenesis is discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA