Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Adicionar filtros








Intervalo de ano
1.
Artigo em Inglês | IMSEAR | ID: sea-158376

RESUMO

Background & objectives: Pathogenic bacteria often cause life threatening infections especially in immunocompromised individuals. Therefore, rapid and reliable species identification is essential for a successful treatment and disease management. We evaluated a rapid, proteomic based technique for identification of clinical bacterial isolates by protein profiling using matrix-assisted laser desorption-ionization time - of - flight mass spectrometry (MALDI-TOF MS). Methods: Freshly grown bacterial isolates were selected from culture plates. Ethanol/formic acid extraction procedure was carried out, followed by charging of MALDI target plate with the extract and overlaying with α-cyano-4 hydroxy-cinnamic acid matrix solution. Identification was performed using the MALDI BioTyper 1.1, software for microbial identification (Bruker Daltonik GmbH, Bremen, Germany). Results: A comparative analysis of 82 clinical bacterial isolates using MALDI -TOF MS and conventional techniques was carried out. Amongst the clinical isolates, the accuracy at the species level for clinical isolates was 98.78%. One out of 82 isolates was not in accordance with the conventional assays because MALDI-TOF MS established it as Streptococcus pneumoniae and conventional methods as Streptococcus viridans. Interpretation & conclusions: MALDI - TOF MS was found to be an accurate, rapid, cost-effective and robust system for identification of clinical bacterial isolates. This innovative approach holds promise for earlier therapeutic intervention leading to better patient care.


Assuntos
Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Bactérias/patogenicidade , Infecções Bacterianas/genética , Infecções Bacterianas/microbiologia , Humanos , Proteômica , RNA Ribossômico 16S/genética , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
2.
Artigo em Inglês | IMSEAR | ID: sea-155068

RESUMO

HIV continues to be a major health problem worldwide even today. Owing to the intricate nature of its interactions with the immune system, HIV has remained an enigma that cleverly utilizes the host machinery to survive. Its ability to evade the host immune system, at both levels, innate and adaptive, allows the pathogen to replicate and transmit from one host to another. It has been shown that HIV has multipronged effects especially on the adaptive immunity, with CD4+ T cells being the worst affected T cell populations. Various analyses have revealed that the exposure to HIV results in clonal expansion and excessive activation of the immune system. Also, an abnormal process of differentiation has been observed suggestive of an alteration and blocks in the maturation of various T cell subsets. Additionally, HIV has shown to accelerate immunosenescence and exhaustion of the overtly activated T cells. Apart from causing phenotypic changes, HIV has adverse effects on the functional aspect of the immune system, with evidences implicating it in the loss of the capacity of T cells to secrete various antiviral cytokines and chemokines. However, there continues to be many aspects of the immunopathogenesis of HIV that are still unknown and thus require further research to convert the malaise of HIV into a manageable epidemic.

3.
Artigo em Inglês | IMSEAR | ID: sea-137359

RESUMO

Background & objectives: HIV infection is characterized by a perturbation in T cell homeostasis, leading to alteration in T cell subsets. In addition to alteration in differentiation, HIV infection also leads to change in T cell survival and regenerative capacity, as suggested by differential expression of CD127 and CD57. We evaluated the expression patterns of CD127 and CD57 on CD4 and CD8 effector, memory and naïve T cell subsets in HIV-infected and uninfected individuals. Methods: We characterized T cell subsets based on expression of these markers, and compared their expression pattern in HIV infected subjects and uninfected controls. We further assessed therapy generated changes in these subsets and expression of CD127 and CD57 on them. Results: There was a generalized decrease in naïve CD4 and CD8 T cells in HIV infected subjects. These changes in T cell subset distribution were related to antigen load. CD127 expression was significantly reduced in T cells from HIV infected subject. In association to this, HIV infected subjects had higher percentage of T cell subsets expressing CD57. Increased CD57 and reduced CD127 expression correlated with plasma viraemia and CD8 T cell activation state. Incomplete restoration of T cell subset proportions was observed, despite suppression of viral replication and increase in CD4 T cell counts. Further, the improvement was more pronounced in CD127 expression. Interpretation & conclusions: HIV infected subjects have reduced T cell regenerative capacity along with increased senescence, highlighting decreased proliferation and effector activities.


Assuntos
Adulto , Antígenos CD57/metabolismo , Terapia Antirretroviral de Alta Atividade , Contagem de Linfócito CD4 , Relação CD4-CD8 , Diferenciação Celular/imunologia , Feminino , Infecções por HIV/tratamento farmacológico , Humanos , Infecções por HIV/imunologia , Imunofenotipagem , Subunidade alfa de Receptor de Interleucina-7/deficiência , Subunidade alfa de Receptor de Interleucina-7/metabolismo , Masculino , Estatísticas não Paramétricas , Subpopulações de Linfócitos T/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA