Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Adicionar filtros








Intervalo de ano
1.
Experimental Neurobiology ; : 207-218, 2020.
Artigo | WPRIM | ID: wpr-832460

RESUMO

The formation of Lewy bodies (LBs), intracellular filamentous inclusions, is one of the hallmarks of Parkinson's disease (PD). α-Synuclein is the main component of LBs and its abnormal accumulation contributes to the pathogenesis of PD. Direct phosphorylation of α-synuclein at multiple Ser/Tyr residues is known to induce its aggregation, consequently promoting LB formation. Death-associated protein kinase 1 (DAPK1), originally identified as a positive mediator of γ-interferon-induced programmed cell death, possesses tumor-suppressive activity and mediates a wide range of cellular processes, including apoptosis and autophagy. Accumulating evidence suggests that DAPK1 is also associated with neuronal cell death and neurodegeneration. For example, DAPK1 phosphorylates tau and amyloid precursor protein, and induces tau aggregation and amyloid β production, respectively, in Alzheimer’s disease. DAPK1 is also accumulated to a larger extent in a mouse model of PD, causing synucleinopathy and dopaminergic neuron degeneration. In this study, we attempted to determine whether DAPK1 phosphorylates α-synuclein and affects cell viability in human dopaminergic neuroblastoma SH-SY5Y cells. We demonstrated that DAPK1 directly phosphorylates α-synuclein at Ser129, and induces the formation of insoluble α-synuclein aggregates. We also showed that DAPK1 enhances rotenone-induced aggregation of α-synuclein, potentiating neuronal cell death. Taken together, these findings suggest that DAPK1 acts as a novel regulator of toxic α-synuclein aggregation, possibly affecting and playing a role in the development of PD.

2.
Experimental Neurobiology ; : 244-248, 2013.
Artigo em Inglês | WPRIM | ID: wpr-84012

RESUMO

Down syndrome (DS) is one of the most common genetic disorders accompanying with mental retardation, cognitive impairment, and deficits in learning and memory. The brains with DS also display many neuropathological features including alteration in neurogenesis and synaptogenesis and early onset of Alzheimer's disease (AD)-like symptoms. Triplication of all or a part of human chromosome 21, especially the 21q22.1~21q22.3 region called 'Down syndrome critical region (DSCR)', has been considered as the main cause of DS. One gene product of DSCR, dual-specificity tyrosine-phosphorylation-regulated kinase 1A (Dyrk1A), has been highlighted as a key contributor to the neural consequences of DS. This minireview summarizes accumulating recent reports about Dyrk1A involvement in the neuritogenesis, synaptogenesis, and AD-like neurofibrillary tangle formation, which is mainly focusing on Dyrk1A-mediated regulation of cytoskeletal proteins, such as tubulin, actin, and microtubule-associated protein tau. Understanding the molecular mechanisms of these phenomena may provide us a rational for new preventive and therapeutic treatment of DS.


Assuntos
Humanos , Actinas , Doença de Alzheimer , Encéfalo , Cromossomos Humanos , Proteínas do Citoesqueleto , Síndrome de Down , Deficiência Intelectual , Aprendizagem , Memória , Emaranhados Neurofibrilares , Neurogênese , Fosfotransferases , Tubulina (Proteína)
3.
Experimental Neurobiology ; : 35-44, 2011.
Artigo em Inglês | WPRIM | ID: wpr-171919

RESUMO

Dual-specificity tyrosine (Y)-phosphorylation-regulated protein kinase 1A (Dyrk1A) is the mammalian homologue of Drosophila melanogaster minibrain and its human gene is mapped to the Down syndrome critical region of chromosome 21. Dyrk1A phosphorylates several transcription factors, including NFAT and CREB and a number of cytosolic proteins such as APP, tau, and alpha-synuclein. Although Dyrk1A is involved in the control of cell growth and postembryonic neurogenesis, its potential role during cell death and signaling pathway is not clearly understood. In the present study, we show that Dyrk1A is activated under the condition of apoptotic cell death. In addition, Dyrk1A is coupled to JNK1 activation, and directly interacts with apoptosis signal-regulating kinase 1 (ASK1). Moreover, Dyrk1A positively regulates ASK1-mediated JNK1-signaling, and appears to directly phosphorylate ASK1. These data indicate that Dyrk1A regulates cell death through facilitating ASK1-mediated signaling events.


Assuntos
Humanos , alfa-Sinucleína , Morte Celular , Cromossomos Humanos Par 21 , Citosol , Síndrome de Down , Drosophila melanogaster , MAP Quinase Quinase Quinase 5 , Neurogênese , Proteínas Quinases , Proteínas , Transdução de Sinais , Fatores de Transcrição , Tirosina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA