RESUMO
Purpose@#In our previous studies, application of trichloroacetic acid (TCA) to gingival fibroblasts or to canine palatal soft tissue was verified to alter the expression of several genes responsible for cell cycle progression. In order to confirm this effect in a system allowing sequential release of TCA and epidermal growth factor (EGF), expression of various cell cycle genes following the application of the agents, using hydrophobically modified glycol chitosan (HGC)-based nano-controlled release system, was explored in this study. @*Materials and methods@#HGCbased nano-controlled release system was developed followed by loading TCA and EGF. The groups were defined as the control (CON); TCA-loaded nano-controlled release system (EXP1); TCA- and EGF- individually loaded nano-controlled release system (EXP2). At 24- and 48 hr culture, expression of 37 cell cycle genes was analyzed in human gingival fibroblasts. Correlations and the influential genes were also analyzed. @*Results@#Numerous genes such as cyclins (CCNDs), cell division cycles (CDCs), cyclin-dependent kinases (CDKs), E2F transcription factors (E2Fs), extracellular signal-regulated kinases (ERKs) and other cell cycle genes were significantly up-regulated in EXP1 and EXP2. Also, cell cycle arrest genes of E2F4, E2F5, and GADD45G were up-regulated but another cell cycle arrest gene SMAD4 was down-regulated. From the multiple regression analysis, CCNA2, CDK4, and ANAPC4 were determined as the most influential factors on the expression of ERK genes. @*Conclusion@#Application of TCA and EGF, using the HGC-based nano-controlled sequential release system significantly up-regulated various cell cycle progression genes, leading to the possibility of regenerating oral soft tissue via application of the proposed system.
RESUMO
Background@#The effect of nano controlled sequential release of trichloroacetic acid (TCA) and epidermal growth factor (EGF) on the oral soft tissue regeneration was determined. @*Methods@#Hydrophobically modified glycol chitosan (HGC) nano controlled system was developed for the sequential release of TCA and EGF, and the release pattern was identified. The HGC-based nano controlled release system was injected into the critical-sized defects created in beagles’ palatal soft tissues. The palatal impression and its scanned body was obtained on various time points post-injection, and the volumetric amount of soft tissue regeneration was compared among the three groups: CON (natural regeneration control group), EXP1 (TCA-loaded nano controlled release system group), EXP2 (TCA and EGF individually loaded nano controlled release system). DNA microarray analysis was performed and various soft tissue regeneration parameters in histopathological specimens were measured. @*Results@#TCA release was highest at Day 1 whereas EGF release was highest at Day 2 and remained high until Day 3. In the volumetric measurements of impression body scans, no significant difference in soft tissue regeneration between the three groups was shown in two-way ANOVA. However, in the one-way ANOVA at Day 14, EXP2 showed a significant increase in soft tissue regeneration compared to CON. High correlation was determined between the histopathological results of each group. DNA microarray showed up-regulation of various genes and related cell signaling pathways in EXP2 compared to CON. @*Conclusion@#HGC-based nano controlled release system for sequential release of TCA and EGF can promote regeneration of oral soft tissue defects.
RESUMO
Abstract: Diarrhea is the most common cause of death in calves, and remains a major health challenge. Although there are many studies on the related pathogens, the understanding of the clinicopathological changes is limited. This study aimed to identify the pathogens and observe the clinicopathological changes in electrolytes and acute phase proteins (APPs) associated with diarrhea.Blood samples and fecal samples were collected from 141 calves for the determination of APPs, electrolyte and acid-base status and identification of enteropathogens, respectively. Single or co-infections with enteropathogens, including virus (bovine viral diarrhea virus, coronavirus, and rotavirus), Eimeria, Cryptosporidium, and Escherichia coliK99 were detected in both non-diarrheic and diarrheic calves. Levels of APPs such as serum amyloid A, haptoglobin and fibrinogen were comparable between diarrheic and nondiarrheic calves. Hypoglycemia, high blood urea, electrolytes and acid-base imbalance (hyponatremia, hypochloremia, and decreased bicarbonate), and strong ion difference (SID) acidosis showed a significant association in diarrheic calves (p < 0.01). Particularly, significant hyponatremia, bicarbonate loss, SID acidosis, hypoglycemia, and elevated blood urea nitrogen were found in rotavirusinfected calves. Monitoring the clinicopathological parameters of APPs and electrolyte levels could be vital in the clinical management of diarrheic calves.
RESUMO
Background@#The effect of nano controlled sequential release of trichloroacetic acid (TCA) and epidermal growth factor (EGF) on the oral soft tissue regeneration was determined. @*Methods@#Hydrophobically modified glycol chitosan (HGC) nano controlled system was developed for the sequential release of TCA and EGF, and the release pattern was identified. The HGC-based nano controlled release system was injected into the critical-sized defects created in beagles’ palatal soft tissues. The palatal impression and its scanned body was obtained on various time points post-injection, and the volumetric amount of soft tissue regeneration was compared among the three groups: CON (natural regeneration control group), EXP1 (TCA-loaded nano controlled release system group), EXP2 (TCA and EGF individually loaded nano controlled release system). DNA microarray analysis was performed and various soft tissue regeneration parameters in histopathological specimens were measured. @*Results@#TCA release was highest at Day 1 whereas EGF release was highest at Day 2 and remained high until Day 3. In the volumetric measurements of impression body scans, no significant difference in soft tissue regeneration between the three groups was shown in two-way ANOVA. However, in the one-way ANOVA at Day 14, EXP2 showed a significant increase in soft tissue regeneration compared to CON. High correlation was determined between the histopathological results of each group. DNA microarray showed up-regulation of various genes and related cell signaling pathways in EXP2 compared to CON. @*Conclusion@#HGC-based nano controlled release system for sequential release of TCA and EGF can promote regeneration of oral soft tissue defects.
RESUMO
Orthognathic surgery of skeletal Class III malocclusion improves oral function and facial appearance. The greater amount of skeletal discrepancy, the greater amount of teeth movement required for decompensation, and this often causes pathological changes in periodontal tissue especially in lower anterior dentition. We made a Top-Down treatment plan with personalized analysis using Face Hunter, Plane System and ARCUS Digma II, in order to resolve severe mobility and cross-bite of lower anterior teeth for 49-year-old female patient who had undergone orthognathic surgery 20 years ago due to skeletal Class III malocclusion and mandibular prognathism. Lower anterior teeth were extracted and alveoloplasty was done. After healing of the wound, immediate loading was conducted immediately after implant placement. Final restorations were fabricated Zirconia using CAD/CAM, and inserted intraorally screw-retained type. During 6-month follow-up, no abnormal episodes of restorations were observed, and obtained satisfactorily both of functional and esthetic outcomes.