Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Adicionar filtros








Intervalo de ano
1.
Experimental & Molecular Medicine ; : 514-523, 2007.
Artigo em Inglês | WPRIM | ID: wpr-174051

RESUMO

TGF-beta1-induced glomerular mesangial cell (GMC) injury is a prominent characteristic of renal pathology in several kidney diseases, and a ternary protein complex consisting of PINCH-1, integrin-linked kinase (ILK) and alpha-parvin plays a pivotal role in the regulation of cell behavior such as cell proliferation and hypertrophy. We report here that PINCH-1-ILK-alpha-parvin (PIP) complex regulates the TGF-beta1-induced cell proliferation and hypertrophy in cultured rat GMCs. When GMCs were treated with TGF-beta1 for 1, 2 and 3 days, the PIP complex formation was up-regulated after 1 day, but it was down-regulated on day 2. Cell numbers were significantly elevated on day 2, but dramatically decreased on day 3. In contrast, a significant increase in cellular protein contents was observed 3 days after TGF-beta1-treatment. TGF-beta1 induced early increase of caspase-3 activity. In GMCs incubated with TGF-beta1 for 2 days, cytosolic expression of p27(Kip1) was dramatically reduced, but its nuclear expression was remarkably elevated. A significantly decreased expression of phospho-Akt (Ser 473) was observed in the cells treated with TGF-beta1 for 1 day. TGF-beta1 induced early increase of phospho-p27(Kip1) (Thr 157) expression with subsequent decrease, and similar responses to TGF-beta1 were observed in the p38 phosphorylation (Thr 180/Thr 182). Taken together, TGF-beta1 differently regulates the PIP complex formation of GMCs in an incubation period-dependant fashion. The TGF-beta1-induced up- and down-regulation of the PIP complex formation likely contributes to the pleiotropic effects of TGF-beta1 on mesangial cell proliferation and hypertrophy through cellular localization of p27(Kip1) and alteration of Akt and p38 phosphorylation. TGF-beta1-induced alteration of the PIP complex formation may be importantly implicated in the development and progression of glomerular failure shown in several kidney diseases.


Assuntos
Animais , Masculino , Ratos , Crescimento Celular , Proliferação de Células , Células Cultivadas , Inibidor de Quinase Dependente de Ciclina p27/metabolismo , Proteínas do Citoesqueleto/metabolismo , Proteínas de Ligação a DNA/metabolismo , Células Mesangiais/efeitos dos fármacos , Proteínas dos Microfilamentos/metabolismo , Fosforilação , Proteínas Serina-Treonina Quinases/metabolismo , Ratos Sprague-Dawley , Transdução de Sinais , Fator de Crescimento Transformador beta1/farmacologia , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
2.
Experimental & Molecular Medicine ; : 668-676, 2006.
Artigo em Inglês | WPRIM | ID: wpr-106418

RESUMO

Stem cells are used for the investigation of developmental processes at both cellular and organism levels and offer tremendous potentials for clinical applications as an unlimited source for transplantation. Gangliosides, sialic acid-conjugated glycosphingolipids, play important regulatory roles in cell proliferation and differentiation. However, their expression patterns in stem cells and during neuronal differentiation are not known. Here, we investigated expression of gangliosides during the growth of mouse embryonic stem cells (mESCs), mesenchymal stem cells (MSCs) and differentiated neuronal cells by using high-performance thin-layer chromatography (HPTLC). Monosialoganglioside 1 (GM1) was expressed in mESCs and MSCs, while GM3 and GD3 were expressed in embryonic bodies. In the 9-day old differentiated neuronal cells from mESCs cells and MSCs, GM1 and GT1b were expressed. Results from immunostaining were consistent with those observed by HPTLC assay. These suggest that gangliosides are specifically expressed according to differentiation of mESCs and MSCs into neuronal cells and expressional difference of gangliosides may be a useful marker to identify differentiation of mESCs and MSCs into neuronal cells.


Assuntos
Camundongos , Animais , Neurônios/citologia , Células-Tronco Mesenquimais/citologia , Gangliosídeos/metabolismo , Células-Tronco Embrionárias/citologia , Células Cultivadas , Diferenciação Celular
3.
The Korean Journal of Physiology and Pharmacology ; : 301-305, 2004.
Artigo em Inglês | WPRIM | ID: wpr-727785

RESUMO

This study examined the effects of N-methyl-D-aspartate (NMDA), alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) and kainate on basal and electrically-evoked release of acetylcholine (ACh) from the rat hippocampal and striatal slices which were preincubated with [3H]choline. Unexpectedly, the basal and evoked ACh release were not affected at all by the treatment with NMDA (3~100microM), AMPA (1~100microM) or kainate (1~100microM) in hippocampal slices. However, in striatal slices, under the Mg2 -free medium, 30microM NMDA increased the basal ACh release with significant decrease of the electrically- evoked releases. The treatment with 1microM MK-801 not only reversed the 30microM NMDA-induced decrease of the evoked ACh release, but also attenuated the facilitatory effect of 30microM NMDA on the basal ACh release. The treatment with either 30microM AMPA or 100microM kainate increased the basal ACh release without any effects on the evoked release. The treatment with 10microM NBQX abolished the AMPA- or kainate-induced increase of the basal ACh release. Interestingly, NBQX significantly attenuated the evoked release when it was treated with AMPA, although it did not affect the evoked release alone without AMPA. These observations demonstrate that in hippocampal slices, ionotropic glutamate receptors do not modulate the ACh release in cholinergic terminals, whereas in striatal slices, activations of ionotropic glutamate receptors increase the basal ACh release though NMDA may decrease the electrically-evoked ACh release.


Assuntos
Animais , Ratos , Acetilcolina , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiônico , Dietilpropiona , Maleato de Dizocilpina , Hipocampo , Ácido Caínico , N-Metilaspartato , Receptores Ionotrópicos de Glutamato
4.
The Journal of the Korean Academy of Periodontology ; : 685-695, 2002.
Artigo em Inglês | WPRIM | ID: wpr-217216

RESUMO

No abstract available.


Assuntos
Humanos , Fibroblastos , Staphylococcus aureus , Staphylococcus
5.
The Korean Journal of Physiology and Pharmacology ; : 87-92, 2002.
Artigo em Inglês | WPRIM | ID: wpr-728067

RESUMO

The aim of this study was to investigate the role of Ca2+-channel blockers in norepinephrine (NE) release from rat hippocampus. Slices and synaptosomes were incubated with [3H]-NE and the releases of the labelled products were evoked by 25 mM KCl stimulation. Nifedipine, diltiazem, nicardipine, flunarizine and pimozide did not affect the evoked and basal release of NE in the slice. But, diltiazem, nicardipine and flunarizine decreased the evoked NE release with a dose-related manner without any change of the basal release from synaptosomes. Also, a large dose of pimozide produced modest decrement of NE release. omega-conotoxin (CTx) GVIA decreased the evoked NE release in a dose-dependent manner without changing the basal release. And omega-CTxMVIIC decreased the evoked NE release in the synaoptosomes without any effect in the slice, but the effect of decrement was far less than that of omega-CTxGVIA. In interaction experiments with omega-CTxGVIA, omega-CTxMVIIC slightly potentiated the effect of omega-CTxGVIA on NE release in the slice and synaptosomal preparations. These results suggest that the NE release in the rat hippocampus is mediated mainly by N-type Ca2+-channels, and that other types such as L-, T- and/or P/Q-type Ca2+-channels could also be participate in this process.


Assuntos
Animais , Ratos , Diltiazem , Flunarizina , Hipocampo , Nicardipino , Nifedipino , Norepinefrina , ômega-Conotoxinas , Pimozida , Sinaptossomos
6.
Korean Journal of Psychopharmacology ; : 140-146, 2001.
Artigo em Coreano | WPRIM | ID: wpr-156178

RESUMO

The aim of this study was to investigate the role of the 5-HT receptors in acetylcholine (ACh) release from the striatum. Slices from the rat striatum and synaptosomes were incubated with [3H]-choline and the release of the labelled products was evoked by electrical (3 Hz, 2 ms, 5 V/cm, rectangular pulses, 2 min) and potassium-stimulation (25 mM), respectively, and the influence of various serotonergic drugs on the evoked tritium outflows was investigated. Serotonin decreased the electrically-evoked ACh release in striatum in a concentration-dependent manner without the change of basal release. In hippocampal and entorhinal cortical slices, serotonin did not affect the evoked and basal release of ACh, but, at large dose (30 microM) decreased the evoked ACh release in hippocampus. 2,5-Dimethoxy-4-iodoamphetamine (DOI), a specific 5-HT 2A/2C agonist, decreased evoked ACh release in the striatum. CGS-12066A (5-HT 1B agonist), m-chlorophenyl-biguanide (5-HT 3 agonist) and 5-[(dimethyl -amino)methyl]-3-(1-methyl-1H-indol-3-yl)-1,2,4-oxadiazole (5-HT 3 antagonist) did not affect the evoked and basal ACh release in all tissues. Ritanserin, a specific 5-HT 2A/2C antagonist, blocked the inhibitory effects of serotonin and DOI, whereas, ketanserin, an another type of specific 5-HT 2A/2C antagonist did not affect the inhibitory effects of serotonin and DOI. In striatal synaptosomal preparation, serotonin and DOI did not affect the K +-evoked ACh release. These findings suggest that ritanserin-sensitive 5-HT 2A/2C receptors located in the soma and/or axons of the striatal cholinergic neurons play a important role in ACh release.


Assuntos
Animais , Ratos , Acetilcolina , Axônios , Carisoprodol , Neurônios Colinérgicos , Hipocampo , Ketanserina , Receptores de Serotonina , Ritanserina , Serotoninérgicos , Serotonina , Sinaptossomos , Trítio
7.
Experimental & Molecular Medicine ; : 151-158, 1998.
Artigo em Inglês | WPRIM | ID: wpr-35390

RESUMO

Glycerophosphrylocholine (GPC) is a renal medullary compatible organic osmolyte that is derived from choline via phosphatidylcholine, which is catalyzed in part by phospholipase A2 (PLA2) and its degradation by GPC: choline phosphodiesterase (GPC: choline PDE). We found that caffeine elevated intracellular free calcium ([Ca2+]i) and GPC level in cultured MDCK cells, canine kidney epithelial cells, and propose a possible biochemical mechanism. When MDCK cells were incubated for 3 h with 1 to 10 mM caffeine, cellular GPC was elevated in a dose-dependent manner, and this occurred independently of the extracellular osmolality. Caffeine stimulated the rate of [14C]choline incorporation into [14C]GPC and PLA2 activity. Whereas, GPC: choline PDE activity was accompanied by less of increase. These enzyme changes demonstrate the increased net synthesis of MDCK GPC. In order to identify what triggers the PLA2 activation, [Ca2+]i was measured by using a fluorescence dye, Fura-2. Caffeine (10 mM) resulted in a typical transient increase in MDCK [Ca2+]i concentration, and this increase was greatly inhibited by pretreatment of MDCK cells with 10 mM ryanodine for 5 min. Ryanodine (10 mM) also inhibited the caffeine-induced stimulation of PLA2 activity. These findings provide the first evidence that caffeine in MDCK cells causes a ryanodine-inhibitable increase of [Ca2+]i and PLA2 activity, resulting in cellular GPC accumulation.


Assuntos
Cães , Animais , Cafeína/farmacologia , Cálcio/metabolismo , Radioisótopos de Carbono , Linhagem Celular , Colina/metabolismo , Glicerilfosforilcolina/metabolismo , Rim/citologia , Fosfolipases A/metabolismo , Fosfolipases A/efeitos dos fármacos , Fosfolipases A/antagonistas & inibidores , Diester Fosfórico Hidrolases/metabolismo , Diester Fosfórico Hidrolases/efeitos dos fármacos , Rianodina/farmacologia , Rianodina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA