Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Genomics & Informatics ; : e39-2023.
Artigo em Inglês | WPRIM | ID: wpr-1000705

RESUMO

DNA barcoding without assessing reliability and validity causes taxonomic errors of species identification, which is responsible for disruptions of their conservation and aquaculture industry. Although DNA barcoding facilitates molecular identification and phylogenetic analysis of species, its availability in clariid catfish lineage remains uncertain. In this study, DNA barcoding was developed and validated for clariid catfish. 2,970 barcode sequences from mitochondrial cytochrome c oxidase I (COI) and cytochrome b (Cytb) genes and D-loop sequences were analyzed for 37 clariid catfish species. The highest intraspecific nearest neighbor distances were 85.47%, 98.03%, and 89.10% for COI, Cytb, and D-loop sequences, respectively. This suggests that the Cytb gene is the most appropriate for identifying clariid catfish and can serve as a standard region for DNA barcoding. A positive barcoding gap between interspecific and intraspecific sequence divergence was observed in the Cytb dataset but not in the COI and D-loop datasets. Intraspecific variation was typically less than 4.4%, whereas interspecific variation was generally more than 66.9%. However, a species complex was detected in walking catfish and significant intraspecific sequence divergence was observed in North African catfish. These findings suggest the need to focus on developing a DNA barcoding system for classifying clariid catfish properly and to validate its efficacy for a wider range of clariid catfish. With an enriched database of multiple sequences from a target species and its genus, species identification can be more accurate and biodiversity assessment of the species can be facilitated.

2.
Genomics & Informatics ; : e13-2023.
Artigo em Inglês | WPRIM | ID: wpr-976791

RESUMO

Importance of accurate molecular diagnosis and quantification of particular disease-related pathogenic microorganisms is highlighted as an introductory step to prevent and care for diseases. In this study, we designed a primer/probe set for quantitative real-time polymerase chain reaction (qRT-PCR) targeting rgpA gene, known as the specific virulence factor of periodontitis-related pathogenic bacteria ‘Porphyromonas gingivalis’, and evaluated its diagnostic efficiency by detecting and quantifying relative bacterial load of P. gingivalis within saliva samples collected from clinical subjects. As a result of qRT-PCR, we confirmed that relative bacterial load of P. gingivalis was detected and quantified within all samples of positive control and periodontitis groups. On the contrary, negative results were confirmed in both negative control and healthy groups. Additionally, as a result of comparison with next-generation sequencing (NGS)–based 16S metagenome profiling data, we confirmed relative bacterial load of P. gingivalis, which was not identified on bacterial classification table created through 16S microbiome analysis, in qRT-PCR results. It showed that an approach to quantifying specific microorganisms by applying qRT-PCR method could solve microbial misclassification issues at species level of an NGS-based 16S microbiome study. In this respect, we suggest that P. gingivalis–specific primer/probe set introduced in present study has efficient applicability in various oral healthcare industries, including periodontitis-related microbial molecular diagnosis field.

3.
Genomics & Informatics ; : e24-2023.
Artigo em Inglês | WPRIM | ID: wpr-976780

RESUMO

Assays of clinical diagnosis and species identification using molecular markers are performed according to a quantitative method in consideration of sensitivity, cost, speed, convenience, and specificity. However, typical polymerase chain reaction (PCR) assay is difficult to quantify and have various limitations. In addition, to perform quantitative analysis with the quantitative real-time PCR (qRT-PCR) equipment, a standard curve or normalization using reference genes is essential. Within the last a decade, previous studies have reported that the digital PCR (dPCR) assay, a third-generation PCR, can be applied in various fields by overcoming the shortcomings of typical PCR and qRT-PCR assays. We selected Stilla Naica System (Stilla Technologies), Droplet Digital PCR Technology (Bio-Rad), and Lab on an Array Digital Real-Time PCR analyzer system (OPTOLANE) for comparative analysis among the various droplet digital PCR platforms currently in use commercially. Our previous study discovered a molecular marker that can distinguish Hanwoo species (Korean native cattle) using Hanwoo-specific genomic structural variation. Here, we report the pros and cons of the operation of each dPCR platform from various perspectives using this species identification marker. In conclusion, we hope that this study will help researchers to select suitable dPCR platforms according to their purpose and resources.

4.
Genomics & Informatics ; : e34-2021.
Artigo em Inglês | WPRIM | ID: wpr-914334

RESUMO

Digital PCR (dPCR) is the third-generation PCR that enables real-time absolute quantification without reference materials. Recently, global diagnosis companies have developed new dPCR equipment. In line with the development, the Lab On An Array (LOAA) dPCR analyzer (Optolane) was launched last year. The LOAA dPCR is a semiconductor chip-based separation PCR type equipment. The LOAA dPCR includes Micro Electro Mechanical System that can be injected by partitioning the target gene into 56 to 20,000 wells. The amount of target gene per wells is digitized to 0 or 1 as the number of well gradually increases to 20,000 wells because its principle follows Poisson distribution, which allows the LOAA dPCR to perform precise absolute quantification. LOAA determined region of interest first prior to dPCR operation. To exclude invalid wells for the quantification, the LOAA dPCR has applied various filtering methods using brightness, slope, baseline, and noise filters. As the coronavirus disease 2019 has now spread around the world, needs for diagnostic equipment of point of care testing (POCT) are increasing. The LOAA dPCR is expected to be suitable for POCT diagnosis due to its compact size and high accuracy. Here, we describe the quantitative principle of the LOAA dPCR and suggest that it can be applied to various fields.

5.
Genomics & Informatics ; : e4-2020.
Artigo em Inglês | WPRIM | ID: wpr-898400

RESUMO

Transposable elements (TEs) constitute approximately half of Bovine genome. They can be a powerful species-specific marker without regression mutations by the structure variation (SV) at the time of genomic evolution. In a previous study, we identified the Hanwoo-specific SV that was generated by a TE–association deletion event using traditional PCR method and Sanger sequencing validation. It could be used as a molecular marker to distinguish different cattle breeds (i.e., Hanwoo vs. Holstein). However, PCR is defective with various final copy quantifications from every sample. Thus, we applied to the droplet digital PCR (ddPCR) platform for accurate quantitative detection of the Hanwoo-specific SV. Although samples have low allele frequency variation within Hanwoo population, ddPCR could perform high sensitive detection with absolute quantification. We aimed to use ddPCR for more accurate quantification than PCR. We suggest that the ddPCR platform is applicable for the quantitative evaluation of molecular markers.

6.
Genomics & Informatics ; : e35-2020.
Artigo em Inglês | WPRIM | ID: wpr-898370

RESUMO

Identifying the patterns of gene expression in breast cancers is essential to understanding their pathophysiology and developing anticancer drugs. Breast cancer is a heterogeneous disease with different subtypes determined by distinct biological features. Luminal breast cancer is characterized by a relatively high expression of estrogen receptor (ER) and progesterone receptor (PR) genes, which are expressed in breast luminal cells. In ~25% of invasive breast cancers, human epidermal growth factor receptor 2 (HER2) is overexpressed; these cancers are categorized as the HER2 type. Triple-negative breast cancer (TNBC), in which the cancer cells do not express ER/PR or HER2, shows highly aggressive clinical outcomes. TNBC can be further classified into specific subtypes according to genomic mutations and cancer immunogenicity. Herein, we discuss the brief history of TNBC classification and its implications for promising treatments.

7.
Genomics & Informatics ; : e4-2020.
Artigo em Inglês | WPRIM | ID: wpr-890696

RESUMO

Transposable elements (TEs) constitute approximately half of Bovine genome. They can be a powerful species-specific marker without regression mutations by the structure variation (SV) at the time of genomic evolution. In a previous study, we identified the Hanwoo-specific SV that was generated by a TE–association deletion event using traditional PCR method and Sanger sequencing validation. It could be used as a molecular marker to distinguish different cattle breeds (i.e., Hanwoo vs. Holstein). However, PCR is defective with various final copy quantifications from every sample. Thus, we applied to the droplet digital PCR (ddPCR) platform for accurate quantitative detection of the Hanwoo-specific SV. Although samples have low allele frequency variation within Hanwoo population, ddPCR could perform high sensitive detection with absolute quantification. We aimed to use ddPCR for more accurate quantification than PCR. We suggest that the ddPCR platform is applicable for the quantitative evaluation of molecular markers.

8.
Genomics & Informatics ; : e35-2020.
Artigo em Inglês | WPRIM | ID: wpr-890666

RESUMO

Identifying the patterns of gene expression in breast cancers is essential to understanding their pathophysiology and developing anticancer drugs. Breast cancer is a heterogeneous disease with different subtypes determined by distinct biological features. Luminal breast cancer is characterized by a relatively high expression of estrogen receptor (ER) and progesterone receptor (PR) genes, which are expressed in breast luminal cells. In ~25% of invasive breast cancers, human epidermal growth factor receptor 2 (HER2) is overexpressed; these cancers are categorized as the HER2 type. Triple-negative breast cancer (TNBC), in which the cancer cells do not express ER/PR or HER2, shows highly aggressive clinical outcomes. TNBC can be further classified into specific subtypes according to genomic mutations and cancer immunogenicity. Herein, we discuss the brief history of TNBC classification and its implications for promising treatments.

9.
Annals of Dermatology ; : 597-601, 2017.
Artigo em Inglês | WPRIM | ID: wpr-226482

RESUMO

BACKGROUND: Trichorhinophalangeal syndrome (TRPS) patients tend to have alopecia that appears to be androgenetic, and this genetic model might give clues to the pathogenesis of hair loss or hair morphogenesis. OBJECTIVE: This study was conducted to identify additional genetic evidence of TRPS and hair morphogenesis from a TRPS patient. METHODS: From one TRPS type I patient, we extracted RNA and profiled whole transcriptome in non-balding and balding scalp areas using high-throughput RNA sequencing. RESULTS: We found a total of 26,320 genes, which comprised 14,892 known genes with new isoforms and 4,883 novel genes from the non-balding and balding areas. Among these, a total of 1,242 genes showed different expression in the two scalp areas (p0). Several genes related to the skin and hair, alopecia, and the TRPS1 gene were validated by qRT-PCR. Twelve of 15 genes (KRT6C, KRTAP3-1, MKI67, GPRC5D, TYRP1, DSC1, PMEL, WIF1, SOX21, TINAG, PTGDS, and TRPS1) were down-regulated (10 genes: p0.05), and the three other genes (HBA2, GAL, and DES) were up-regulated (p<0.01) in the balding scalp. Many genes related to keratin and hair development were down-regulated in the balding scalp of the TRPS type I patient. In particular, the TRPS1 gene might be related to androgen metabolism and hair morphogenesis. CONCLUSION: Our result could suggest a novel perspective and evidence to support further study of TRPS and hair morphogenesis.


Assuntos
Humanos , Alopecia , Perfilação da Expressão Gênica , Cabelo , Sequenciamento de Nucleotídeos em Larga Escala , Metabolismo , Modelos Genéticos , Morfogênese , Isoformas de Proteínas , RNA , Couro Cabeludo , Pele , Transcriptoma
10.
Genomics & Informatics ; : 70-77, 2016.
Artigo em Inglês | WPRIM | ID: wpr-117345

RESUMO

Transposable elements are one of major sources to cause genomic instability through various mechanisms including de novo insertion, insertion-mediated genomic deletion, and recombination-associated genomic deletion. Among them is Alu element which is the most abundant element, composing ~10% of the human genome. The element emerged in the primate genome 65 million years ago and has since propagated successfully in the human and non-human primate genomes. Alu element is a non-autonomous retrotransposon and therefore retrotransposed using L1-enzyme machinery. The 'master gene' model has been generally accepted to explain Alu element amplification in primate genomes. According to the model, different subfamilies of Alu elements are created by mutations on the master gene and most Alu elements are amplified from the hyperactive master genes. Alu element is frequently involved in genomic rearrangements in the human genome due to its abundance and sequence identity between them. The genomic rearrangements caused by Alu elements could lead to genetic disorders such as hereditary disease, blood disorder, and neurological disorder. In fact, Alu elements are associated with approximately 0.1% of human genetic disorders. The first part of this review discusses mechanisms of Alu amplification and diversity among different Alu subfamilies. The second part discusses the particular role of Alu elements in generating genomic rearrangements as well as human genetic disorders.


Assuntos
Humanos , Elementos Alu , Elementos de DNA Transponíveis , Doenças Genéticas Inatas , Genoma , Genoma Humano , Instabilidade Genômica , Doenças do Sistema Nervoso , Primatas , Recombinação Genética , Retroelementos
11.
Genomics & Informatics ; : 78-84, 2016.
Artigo em Inglês | WPRIM | ID: wpr-117344

RESUMO

Extranodal natural killer (NK)/T-cell lymphoma, nasal type (NKTCL), is a malignant disorder of cytotoxic lymphocytes of NK or T cells. It is an aggressive neoplasm with a very poor prognosis. Although extranodal NKTCL reportedly has a strong association with Epstein-Barr virus, the molecular pathogenesis of NKTCL has been unexplored. The recent technological advancements in next-generation sequencing (NGS) have made DNA sequencing cost- and time-effective, with more reliable results. Using the Ion Proton Comprehensive Cancer Panel, we sequenced 409 cancer-related genes to identify somatic mutations in five NKTCL tissue samples. The sequencing analysis detected 25 mutations in 21 genes. Among them, KMT2D, a histone modification-related gene, was the most frequently mutated gene (four of the five cases). This result was consistent with recent NGS studies that have suggested KMT2D as a novel driver gene in NKTCL. Mutations were also found in ARID1A, a chromatin remodeling gene, and TP53, which also recurred in recent NGS studies. We also found mutations in 18 novel candidate genes, with molecular functions that were potentially implicated in cancer development. We suggest that these genes may result in multiple oncogenic events and may be used as potential bio-markers of NKTCL in the future.


Assuntos
Montagem e Desmontagem da Cromatina , Herpesvirus Humano 4 , Sequenciamento de Nucleotídeos em Larga Escala , Histonas , Linfócitos , Linfoma , Prognóstico , Prótons , Análise de Sequência de DNA , Linfócitos T
12.
Genomics & Informatics ; : 272-276, 2013.
Artigo em Inglês | WPRIM | ID: wpr-11245

RESUMO

Sequence analysis of the 16S rRNA gene has been widely used for the classification of microorganisms. However, we have been unable to clearly identify five Flavobacterium species isolated from a freshwater by using the gene as a single marker, because the evolutionary history is incomplete and the pace of DNA substitutions is relatively rapid in the bacteria. In this study, we tried to classify Flavobacterium species through multilocus sequence analysis (MLSA), which is a practical and reliable technique for the identification or classification of bacteria. The five Flavobacterium species isolated from freshwater and 37 other strains were classified based on six housekeeping genes: gyrB, dnaK, tuf, murG, atpA, and glyA. The genes were amplified by PCR and subjected to DNA sequencing. Based on the combined DNA sequence (4,412 bp) of the six housekeeping genes, we analyzed the phylogenetic relationship among the Flavobacterium species. The results indicated that MLSA, based on the six housekeeping genes, is a trustworthy method for the identification of closely related Flavobacterium species.


Assuntos
Bactérias , Sequência de Bases , Classificação , DNA , Flavobacterium , Água Doce , Genes Essenciais , Genes de RNAr , Tipagem de Sequências Multilocus , Filogenia , Reação em Cadeia da Polimerase , Análise de Sequência , Análise de Sequência de DNA
13.
Genomics & Informatics ; : 226-233, 2012.
Artigo em Inglês | WPRIM | ID: wpr-11760

RESUMO

Since the advent of whole-genome sequencing, transposable elements (TEs), just thought to be 'junk' DNA, have been noticed because of their numerous copies in various eukaryotic genomes. Many studies about TEs have been conducted to discover their functions in their host genomes. Based on the results of those studies, it has been generally accepted that they have a function to cause genomic and genetic variations. However, their infinite functions are not fully elucidated. Through various mechanisms, including de novo TE insertions, TE insertion-mediated deletions, and recombination events, they manipulate their host genomes. In this review, we focus on Alu, L1, human endogenous retrovirus, and short interspersed element/variable number of tandem repeats/Alu (SVA) elements and discuss how they have affected primate genomes, especially the human and chimpanzee genomes, since their divergence.


Assuntos
Humanos , Elementos Alu , Complexo I de Proteína do Envoltório , DNA , Elementos de DNA Transponíveis , Retrovirus Endógenos , Variação Genética , Genoma , Elementos Nucleotídeos Longos e Dispersos , Pan troglodytes , Primatas , Recombinação Genética , Trometamina
14.
Korean Journal of Clinical Microbiology ; : 67-73, 2011.
Artigo em Inglês | WPRIM | ID: wpr-123824

RESUMO

BACKGROUND: In the present study, the resistance mechanisms against carbapenems and aminoglycosides for 23 strains of multi-drug-resistant Acinetobacter baumannii isolated at a university hospital were investigated. METHODS: The minimal inhibitory concentrations (MICs) were determined via broth microdilution or Etest. The genes encoding OXA-type carbapenemases and 16S rRNA methylase were identified using multiplex PCR, and the amplified products were sequenced. Conjugation experiments were conducted, and an epidemiologic study was performed using enterobacterial repetitive intergenic consensus (ERIC)-PCR. RESULTS: In the isolates, the MICs of the tested aminoglycosides, including arbekacin, were >1024 microg/mL; the MICs of aztreonam, cefepime, ceftazidime, and ciprofloxacin ranged from 64 to 128 microg/mL; and the MICs of carbapenem ranged from 32 to 64 microg/mL, as determined through the broth microdilution test. According to the E-test, the MICs of ampicillin/sulbactam and colistin were 8 and 0.25 to 0.38 microg/mL, respectively. Sequence analysis confirmed that all of the isolates expressed carbapenemases OXA-23 and OXA-66, as well as armA 16S rRNA methylase. In addition, ISAba1 was identified upstream of the gene encoding OXA-23. OXA-23 and armA were not transferred to Escherichia coli J53 cells in the transconjugation experiments. ERIC-PCR molecular fingerprinting produced a single pattern in all cases. CONCLUSION: The co-production of OXA-23 and armA 16S rRNA methylase may be attributed to the multidrug resistance of the A. baumannii isolates in the present study. Stricter surveillance and more rapid detection are necessary to prevent the spread of this type of resistance in the future.


Assuntos
Acinetobacter , Acinetobacter baumannii , Aminoglicosídeos , Aztreonam , Carbapenêmicos , Ceftazidima , Cefalosporinas , Ciprofloxacina , Colistina , Consenso , Dermatoglifia , Dibecacina , Resistência a Múltiplos Medicamentos , Estudos Epidemiológicos , Escherichia coli , Metiltransferases , Reação em Cadeia da Polimerase Multiplex , República da Coreia , RNA Ribossômico 16S , Análise de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA