Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Adicionar filtros








Intervalo de ano
1.
Journal of Prevention and Treatment for Stomatological Diseases ; (12): 315-320, 2024.
Artigo em Chinês | WPRIM | ID: wpr-1013094

RESUMO

@#As the main means of mastication, teeth can withstand countless functional contacts. The mechanical properties of teeth are closely related to their tissue structure. Enamel and dentin have a high hardness and modulus of elasticity, and their graded structure allows them to withstand bite forces without being susceptible to fracture. When tooth tissue is defective, full crown restoration is often needed to restore the normal shape and function of the tooth. Metal materials, ceramic materials, and polyetheretherketone (PEEK) materials are commonly used for crown restoration. Metal materials have certain disadvantages in terms of aesthetics and are relatively rarely used in clinical practice. Ceramic materials with different compositions exhibit differences in performance and aesthetics, but their elastic modulus and hardness are much higher than those of dental tissue, resulting in mismatching mechanical properties. In contrast, the elastic modulus of PEEK is lower than that of tooth tissue and similar to that of bone tissue, but its properties can be improved by fiber reinforcement. Notably, when the mechanical properties of a restoration material and tooth tissue are not fully matched, the interface between them often forms a potential weak link, which ultimately affects the stability and long-term effect of the restoration. This article introduces the mechanical properties and corresponding structural characteristics of enamel and dentin. On this basis, the advantages and limitations of existing restoration materials are analyzed, and the possibility of biomimetic design of full crowns is further explored.

2.
Journal of Prevention and Treatment for Stomatological Diseases ; (12): 638-643, 2021.
Artigo em Chinês | WPRIM | ID: wpr-881260

RESUMO

@#Dental resin materials have been widely used in the treatment of dental defects. However, the polymerization shrinkage of the resin materials tends to cause microleakage and accumulation of bacterial plaque, which leads to secondary dental caries. Endowing dental resin with antibacterial properties is an important way to solve this problem. Adding antibacterial agents to dental resin is the main method to give it antibacterial properties. Antimicrobial agents are mainly divided into three types: release type, non-release type and mixed type. In terms of antibacterial effects, the selection and addition of antibacterial agents will affect the antibacterial and mechanical properties of dental resin materials; and the long-term antibacterial effect of antimicrobial agents in the oral cavity remains to be verified; as antimicrobial agents or other environmental factors can lead to drug resistance and even dormant persistent bacteria. In recent years, researchers have been committed to improving the antibacterial effect by modifying antibacterial agents. The sustained release of antimicrobial agents via carriers is also the main research direction. This paper reviews the research progress on the antibacterial properties of dental resin materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA