Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Adicionar filtros








Intervalo de ano
1.
Neuroscience Bulletin ; (6): 68-71, 2006.
Artigo em Inglês | WPRIM | ID: wpr-300966

RESUMO

The patch clamp recording technique in vivo is a blind patch clamp recording methods to record the current of the spinal or cereral neurons of anaesthesia ( or awake) animals. This technique can be used to study the synaptic function and plasticity in central nervous system in vivo in order to understand the physiological properties of the ion channels from an integrated point of view. The advantage of this technique has already presented itself in the study of the synaptic transmission and nervous network. Nowadays, in vivo patch whole-cell recording technique in combination with other techniques is becoming a common method in the research fields.

2.
Acta Physiologica Sinica ; (6): 58-64, 2006.
Artigo em Chinês | WPRIM | ID: wpr-265486

RESUMO

The modulation of ACh on delayed rectifier-like potassium currents (I(K)) was studied in freshly dissociated cerebral cortical neurons using the whole-cell patch-clamp technique. Wistar rats between 10- and 14-day old of both sexes were used. After rats were decapitated, their brains were quickly removed, iced, and then manually cut into 400 mum slices. Slices were then incubated for 0.5 h at 32 degrees C in a buffered artificial cerebrospinal fluid (ACSF) bubbled with 95% O2, 5% CO2. Slices were then removed into buffered ACSF containing protease (0.5 mg/ml) at 32 degrees C. After 30 min of enzyme digestion, tissue was rinsed three times in the buffered saline. Then the enzyme-treated slices were mechanically dissociated with a graded series of fire-polished Pasteur pipettes. The cell suspension was then plated into a 35 mm dish and placed on the stage of a Olympus inverted microscope. For whole-cell recordings of currents, standard voltage-clamp techniques were used. Neurons were held at -80 mV, and the I(K) was evoked by 2 000 ms depolarizing voltage commands to potential between -40 mV and +60 mV in 10 mV steps applied at a frequency of 0.5 Hz. It was found that the inhibitory effect of ACh (0.1, 1, 10, 100 mumol/L) on I(K) was dose-dependent. It was also found that ACh affected the activation process of I(K) significantly, i.e., the activation curve of I(K) was characterized by half-activation potential of (-41.8+/-9.7) mV and a slope factor of (30.7+/-7.2) mV in the cortical neurons and they were changed to (-122.4+/-38.6) mV and (42.4+/-7.0) mV, respectively, after giving ACh (10 mumol/L). Tubocurarine (100 mumol/L) antagonized the inhibitory effect of ACh on I(K), and the drop of currents varied from the control value of (36.5+/-7..8)% to (16.9+/-13.8)% (n=8, P<0.01). 4-DAMP (10 mumol/L) blocked the inhibitory effect of ACh on I(K), and the currents reduced from the control value of (36.5+/-7.8)% to (26.8+/-4.7) % (n=6, P<0.05). Pirenzepin did not antagonize the inhibition of ACh on I(K) (n=7, P>0.05). Chelerythrine (20 mumol/L) blocked the inhibitory effect of ACh on I(K) and the currents reduced from the control value of (36.5+/-7.8)% to (11.7+/-17.3)% (n=6, P<0.05). On the contrary, PDBu (10 mumol/L) strengthened the inhibition of ACh on I(K) and the drop of currents changed from the control value of (36.5+/-7.8)% to (59.2+/-14.0)% (n=5, P<0.05). PDBu abolished the antagonism of chelerythrine on ACh in cortical neurons. It is suggested that the ACh-induced depolarization of neurons in the cortex is attributed to the inhibition of I(K) that is most likely evoked by the activation of nicotinic ACh receptors and muscarinic M3 receptor via protein kinase C (PKC) signal transduction pathway.


Assuntos
Animais , Feminino , Masculino , Ratos , Acetilcolina , Fisiologia , Separação Celular , Canais de Potássio de Retificação Tardia , Neurônios , Metabolismo , Fisiologia , Técnicas de Patch-Clamp , Proteína Quinase C , Metabolismo , Fisiologia , Ratos Wistar , Receptor Muscarínico M3 , Metabolismo , Receptores Nicotínicos , Metabolismo , Transdução de Sinais , Fisiologia , Córtex Somatossensorial , Biologia Celular , Fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA