Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Adicionar filtros








Intervalo de ano
1.
Acta Academiae Medicinae Sinicae ; (6): 871-874, 2019.
Artigo em Chinês | WPRIM | ID: wpr-781646

RESUMO

Interfascial plane block is a quick,safe and simple technique that offers effective analgesia for video-assisted thoracotomy.However,the currently described methods still have certain limitations.We explored the application of a novel interfascial plane block method-iliocostal plane block in video-assisted thoracotomy,along with the use of stained cadaveric anatomy,with an attempt to shed new light on the analgesia for video-assisted thoracotomy.


Assuntos
Humanos , Analgesia , Toracotomia
2.
Journal of Huazhong University of Science and Technology (Medical Sciences) ; (6): 88-93, 2011.
Artigo em Chinês | WPRIM | ID: wpr-298662

RESUMO

The purpose of this study was to fabricate decelluarized valve scaffold modified with polyethylene glycol nanoparticles loaded with transforming growth factor-β1 (TGF-β1),by which to improve the extracellular matrix microenvironment for heart valve tissue engineering in vitro.Polyethylene glycol nanoparticles were obtained by an emulsion-crosslinking method,and their morphology was observed under a scanning electron microscope.Decelluarized valve scaffolds,prepared by using trypsinase and TritonX-100,were modified with nanoparticles by carbodiimide,and then TGF-β1 was loaded into them by adsorption.The TGF-β1 delivery of the fabricated scaffold was measured by asing enzyme-linked immunosorbent assay.Whether unseeded or reseeded with myofibroblast from rats,the morphologic,biochemical and biomechanical characteristics of hybrid scaffolds were tested and compared with decelluarized scaffolds under the same conditions.The enzyme-linked immunosorbent assay revealed a typical delivery of nanoparticles.The morphologic observations and biological data analysis indicated that fabricated scaffolds possessed advantageous biocompatibility and biomechanical property beyond decelluarized scaffolds.Altogether this study proved that it was feasible to fabricate the hybrid scaffold and effective to improve extracellular matrix microenvironment,which is beneficial for an application in heart valve tissue engineering.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA