Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Adicionar filtros








Intervalo de ano
1.
Electron. j. biotechnol ; 25: 21-27, ene. 2017. ilus, graf, tab
Artigo em Inglês | LILACS | ID: biblio-1008381

RESUMO

Background: Biomineralization is a significant process performed by living organisms in which minerals are produced through the hardening of biological tissues. Herein, we focus on calcium carbonate precipitation, as part of biomineralization, to be used in applications for environmental protection, material technology, and other fields. A strain GM-1, Microbacterium sp. GM-1, isolated from active sludge, was investigated for its ability to produce urease and induce calcium carbonate precipitation in a metabolic process. Results: It was discovered that Microbacterium sp. GM-1 resisted high concentrations of urea up to 60 g/L. In order to optimize the calcification process of Microbacterium sp. GM-1, the concentrations of Ni2+ and urea, pH value, and culture time were analyzed through orthogonal tests. The favored calcite precipitation culture conditions were as follows: the concentration of Ni2+ and urea were 50 µM and 60 g/L, respectively, pH of 10, and culture time of 96 h. Using X-ray diffraction analysis, the calcium carbonate polymorphs produced by Microbacterium sp. GM-1 were proven to be mainly calcite. Conclusions: The results of this research provide evidence that Microbacterium sp. GM-1 can biologically induce calcification and suggest that strain GM-1 may play a potential role in the synthesis of new biominerals and in bioremediation or biorecovery.


Assuntos
Actinobacteria/metabolismo , Biomineralização , Precipitação Química , Ureia/metabolismo , Calcificação Fisiológica , Carbonato de Cálcio/metabolismo , Actinobacteria/isolamento & purificação , Actinobacteria/química , Hidrólise , Níquel/metabolismo
2.
Electron. j. biotechnol ; 19(4): 90-97, July 2016. ilus
Artigo em Inglês | LILACS | ID: lil-793958

RESUMO

Background: Nowadays, leaching-ore bacteria, especially Acidithiobacillus ferrooxidans is widely used to retrieve heavy metals, many researches reflected that extra adding microorganism could promote bioleaching efficiency by different mechanisms, but few of them discussed the interaction between microorganisms and based on growth model. This study aimed to provide theoretical support for the collaborative bioleaching of multiple microorganisms by using the Lotka-Volterra (L-V) model. Results: This study investigated the interaction of Acidithiobacillus ferrooxidans, Rhizobium phaseoli,and Rhodotorula sp. Results showed that the individual growth of the three microorganisms fit the logistic curves. The environmental capacities of A. ferrooxidans, R. phaseoli, and Rhodotorula sp. were 1.88 x 109, 3.26 x 108, and 2.66 x 108 cells/mL, respectively. Co-bioleaching showed mutualism between A. ferrooxidans and R. phaseoli with mutualism coefficients of a =1.19and /3 = 0.31, respectively. The relationship between A. ferrooxidans and Rhodotorula sp. could be considered as commensalism. The commensalism coefficient y of the effect of Rhodotorula sp. on A. ferrooxidans was 2.45. The concentrations of A. ferrooxidans and R. phaseoli were 3.59 x 109 and 1.44 x 109 cells/mL in group E, respectively, as predicted by the model. The concentrations of A. ferrooxidans and Rhodotorula sp. were 2.38 x 109 and 2.66 x 108 cells/mL, respectively. The experimental peak values of the concentrations in microorganism groups E and F were detected on different days, but were quite close to the predicted values. Conclusion: The relationship among microorganisms during leaching could be described appropriately by Lotka-Volterra model between the initial and peak values. The relationship of A. ferrooxidans and R. phaseoli could be considered as mutualism, whereas, the relationship of A. ferrooxidans and R. phaseoli could be considered as commensalism.


Assuntos
Rhodotorula/crescimento & desenvolvimento , Acidithiobacillus/crescimento & desenvolvimento , Rhizobium phaseoli/crescimento & desenvolvimento , Simbiose
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA