Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Adicionar filtros








Intervalo de ano
1.
Chinese Journal of Natural Medicines (English Ed.) ; (6): 369-378, 2020.
Artigo em Inglês | WPRIM | ID: wpr-827233

RESUMO

Pancreatic lipase (PL), a crucial enzyme in the digestive system of mammals, has been proven as a therapeutic target to prevent and treat obesity. The purpose of this study is to evaluate and characterize the PL inhibition activities of the major constituents from Fructus Psoraleae (FP), one of the most frequently used Chinese herbs with lipid-lowering activity. To this end, a total of eleven major constituents isolated from Fructus Psoraleae have been obtained and their inhibition potentials against PL have been assayed by a fluorescence-based assay. Among all tested compounds, isobavachalcone, bavachalcone and corylifol A displayed strong inhibition on PL (IC < 10 μmol·L). Inhibition kinetic analyses demonstrated that isobavachalcone, bavachalcone and corylifol A acted as mixed inhibitors against PL-mediated 4-methylumbelliferyl oleate (4-MUO) hydrolysis, with the K values of 1.61, 3.77 and 10.16 μmol·L, respectively. Furthermore, docking simulations indicated that two chalcones (isobavachalcone and bavachalcone) could interact with the key residues located in the catalytic cavity of PL via hydrogen binding and hydrophobic interactions. Collectively, these finding provided solid evidence to support that Fructus Psoraleae contained bioactive compounds with lipid-lowering effects via targeting PL, and also suggested that the chalcones in Fructus Psoraleae could be used as ideal leading compounds to develop novel PL inhibitors.

2.
Acta Physiologica Sinica ; (6): 840-844, 2007.
Artigo em Inglês | WPRIM | ID: wpr-316773

RESUMO

To investigate the electrophysiological effects of 17β-estradiol on pacemaker cells in sinoatrial (SA) nodes of rabbits and the underlying mechanism, intracellular microelectrode technique was used to record action potential (AP) in SA node cells of rabbits. The results showed that: (1) 17β-estradiol (1, 10, 100 μmol/L) not only significantly decreased the amplitude of action potential (APA) and the maximal rate of depolarization (V(max)), but also decreased the velocity of diastolic (phase 4) depolarization (VDD) and rate of pacemaker firing (RPF) in a concentration-dependent manner. The AP duration at 50% repolarization (APD(50)) and at 90% repolarization (APD(90)) were prolonged. But the maximal diastolic potential (MDP) was not affected. (2) Pretreatment with tamoxifen (10 μmol/L), an inhibitor of estrogen receptor, did not block the electrophysiological effects of 17β-estradiol (10 μmol/L) on SA node cells. (3) Pretreatment with N(G)-nitro-L-arginine methyl ester (L-NAME, 100 μmol/L), a nitric oxide (NO) synthase inhibitor, completely abolished the electrophysiological effects of 17β-estradiol (10 μmol/L) on SA node cells. The results suggest that 17β-estradiol inhibits the electrophysiological activity of pacemaker cells in SA nodes of rabbits in a concentration-dependent manner possibly through a non-genomic mechanism related with NO.


Assuntos
Animais , Coelhos , Potenciais de Ação , Fenômenos Eletrofisiológicos , Estradiol , Farmacologia , Miócitos Cardíacos , Nó Sinoatrial , Biologia Celular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA