Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Adicionar filtros








Intervalo de ano
1.
Braz. j. med. biol. res ; 57: e13258, 2024. tab, graf
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1528102

RESUMO

Screener, a board game supplemented with online resources, was introduced and distributed by the Brazilian Society of Pharmacology and Experimental Therapeutics to postgraduate programs as an instructional tool for the process of drug discovery and development (DDD). In this study, we provided a comprehensive analysis of five critical aspects for evaluating the quality of educational games, namely: 1) description of the intervention; 2) underlying pedagogical theory; 3) identification of local educational gaps; 4) impact on diverse stakeholders; and 5) elucidation of iterative quality enhancement processes. We also present qualitative and quantitative assessments of the effectiveness of this game in 11 postgraduate courses. We employed the MEEGA+ online survey, comprising thirty-three close-ended unipolar items with 5-point Likert-type response scales, to assess student perceptions of the quality and utility of Screener. Based on 115 responses, the results indicated a highly positive outlook among students. In addition, we performed a preliminary evaluation of learning outcomes in two courses involving 28 students. Pre- and post-quizzes were applied, each consisting of 20 True/False questions directly aligned with the game's content. The analysis revealed significant improvement in students' performance following engagement with the game, with scores rising from 8.4 to 13.3 (P<0.0001, paired t-test) and 9.7 to 12.7 (P<0.0001, paired t-test). These findings underscore the utility of Screener as an enjoyable and effective tool for facilitating a positive learning experience in the DDD process. Notably, the game can also reduce the educational disparities across different regions of our continental country.

2.
Braz. j. med. biol. res ; 55: e12522, 2022. tab
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1420738

RESUMO

Clinical oncology has shown outstanding progress improving patient survival due to the incorporation of new drugs. However, treatment success may be reduced by the emergency of dose-limiting side effects, such as intestinal mucositis and diarrhea. Mucositis and diarrhea management is symptomatic, and there is no preventive therapy. Bacterial and fungal-based compounds have been suggested as an alternative for preventing the development of diarrhea in cancer patients. Using probiotics is safe and effective in immunocompetent individuals, but concerns remain during immunosuppressive conditions. Paraprobiotics, formulations composed of non-viable microorganisms, have been proposed to overcome such limitation. The present literature review discusses current evidence regarding the possible use of paraprobiotics as an alternative to probiotics to prevent gastrointestinal toxicity of cancer chemotherapy.

3.
Braz. j. med. biol. res ; 53(11): e10263, 2020. graf
Artigo em Inglês | LILACS, ColecionaSUS | ID: biblio-1132488

RESUMO

Sensory neuropathy is a dose-limiting side effect of oxaliplatin-based cancer treatment. This study investigated the antinociceptive effect of amifostine and its potential neuroprotective mechanisms on the oxaliplatin-related peripheral sensory neuropathy in mice. Oxaliplatin (1 mg/kg) was injected intravenously in Swiss albino male mice twice a week (total of nine injections), while amifostine (1, 5, 25, 50, and 100 mg/kg) was administered subcutaneously 30 min before oxaliplatin. Mechanical and thermal nociceptive tests were performed once a week for 49 days. Additionally, c-Fos, nitrotyrosine, and activating transcription factor 3 (ATF3) immunoexpressions were assessed in the dorsal root ganglia. In all doses, amifostine prevented the development of mechanical hyperalgesia and thermal allodynia induced by oxaliplatin (P<0.05). Amifostine at the dose of 25 mg/kg provided the best protection (P<0.05). Moreover, amifostine protected against neuronal hyperactivation, nitrosative stress, and neuronal damage in the dorsal root ganglia, detected by the reduced expression of c-Fos, nitrotyrosine, and ATF3 (P<0.05 vs the oxaliplatin-treated group). In conclusion, amifostine reduced the nociception induced by oxaliplatin in mice, suggesting the possible use of amifostine for the management of oxaliplatin-induced peripheral sensory neuropathy.


Assuntos
Animais , Masculino , Coelhos , Doenças do Sistema Nervoso Periférico/induzido quimicamente , Doenças do Sistema Nervoso Periférico/prevenção & controle , Amifostina/uso terapêutico , Oxaliplatina , Hiperalgesia/induzido quimicamente , Hiperalgesia/prevenção & controle , Hiperalgesia/tratamento farmacológico , Antineoplásicos/toxicidade
4.
Braz. j. med. biol. res ; 52(3): e8251, 2019. tab, graf
Artigo em Inglês | LILACS | ID: biblio-984035

RESUMO

Oral mucositis (OM) is a common and dose-limiting side effect of cancer treatment, including 5-fluorouracil (5-FU) and radiotherapy. The efficacy of the therapeutic measures to prevent OM is limited and disease prevention is not fully observable. Amifostine is a cytoprotective agent with a described anti-inflammatory potential. It is clinically used to reduce radiotherapy and chemotherapy-associated xerostomia. This study investigated the protective effect of amifostine on an experimental model of OM. Hamsters were divided into six groups: saline control group (5 mL/kg), mechanical trauma (scratches) of the right cheek pouch; 5-FU (60 and 40 mg/kg, ip, respectively, administered on days 1 and 2); amifostine (12.5, 25, or 50 mg/kg) + 5-FU + scratches. Salivation rate was assessed and the animals were euthanized on day 10 for the analysis of macroscopic and microscopic injury by scores. Tissue samples were harvested for the measurement of neutrophil infiltration and detection of inflammatory markers by ELISA and immunohistochemistry. 5-FU induced pronounced hyposalivation, which was prevented by amifostine (P<0.05). In addition, 5-FU injection caused pronounced tissue injury accompanied by increased neutrophil accumulation, tumor necrosis factor-alpha (TNF-α), and interleukin-1 beta (IL-1β) tissue levels, and positive immunostaining for TNF-α, IL-1β, and inducible nitric oxide synthase (iNOS). Interestingly, amifostine prevented the inflammatory reaction and consequently improved macroscopic and microscopic damage (P<0.05 vs 5-FU group). Amifostine reduced inflammation and protected against 5-FU-associated oral mucositis and hyposalivation.


Assuntos
Animais , Masculino , Estomatite/prevenção & controle , Xerostomia/prevenção & controle , Amifostina/uso terapêutico , Substâncias Protetoras/uso terapêutico , Fluoruracila/efeitos adversos , Inflamação/prevenção & controle , Estomatite/induzido quimicamente , Estomatite/patologia , Xerostomia/induzido quimicamente , Xerostomia/patologia , Cricetinae , Modelos Animais de Doenças , Inflamação/induzido quimicamente , Inflamação/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA