Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Adicionar filtros








Intervalo de ano
1.
Journal of Stroke ; : 223-232, 2023.
Artigo em Inglês | WPRIM | ID: wpr-1001576

RESUMO

Background@#and Purpose Intracranial arterial stenosis (ICAS)-related stroke occurs due to three primary mechanisms with distinct infarct patterns: (1) borderzone infarcts (BZI) due to impaired distal perfusion, (2) territorial infarcts due to distal plaque/thrombus embolization, and (3) plaque progression occluding perforators. The objective of the systematic review is to determine whether BZI secondary to ICAS is associated with a higher risk of recurrent stroke or neurological deterioration. @*Methods@#As part of this registered systematic review (CRD42021265230), a comprehensive search was performed to identify relevant papers and conference abstracts (with ≥20 patients) reporting initial infarct patterns and recurrence rates in patients with symptomatic ICAS. Subgroup analyses were performed for studies including any BZI versus isolated BZI and those excluding posterior circulation stroke. The study outcome included neurological deterioration or recurrent stroke during follow-up. For all outcome events, corresponding risk ratios (RRs) and 95% confidence intervals (95% CI) were calculated. @*Results@#A literature search yielded 4,478 records with 32 selected during the title/abstract triage for full text; 11 met inclusion criteria and 8 studies were included in the analysis (n=1,219 patients; 341 with BZI). The meta-analysis demonstrated that the RR of outcome in the BZI group compared to the no BZI group was 2.10 (95% CI 1.52–2.90). Limiting the analysis to studies including any BZI, the RR was 2.10 (95% CI 1.38–3.18). For isolated BZI, RR was 2.59 (95% CI 1.24–5.41). RR was 2.96 (95% CI 1.71–5.12) for studies only including anterior circulation stroke patients. @*Conclusion@#This systematic review and meta-analysis suggests that the presence of BZI secondary to ICAS may be an imaging biomarker that predicts neurological deterioration and/or stroke recurrence.

2.
Thanh-N. NGUYEN; Muhammad-M. QURESHI; Piers KLEIN; Hiroshi YAMAGAMI; Mohamad ABDALKADER; Robert MIKULIK; Anvitha SATHYA; Ossama-Yassin MANSOUR; Anna CZLONKOWSKA; Hannah LO; Thalia-S. FIELD; Andreas CHARIDIMOU; Soma BANERJEE; Shadi YAGHI; James-E. SIEGLER; Petra SEDOVA; Joseph KWAN; Diana-Aguiar DE-SOUSA; Jelle DEMEESTERE; Violiza INOA; Setareh-Salehi OMRAN; Liqun ZHANG; Patrik MICHEL; Davide STRAMBO; João-Pedro MARTO; Raul-G. NOGUEIRA; Espen-Saxhaug KRISTOFFERSEN; Georgios TSIVGOULIS; Virginia-Pujol LEREIS; Alice MA; Christian ENZINGER; Thomas GATTRINGER; Aminur RAHMAN; Thomas BONNET; Noémie LIGOT; Sylvie DE-RAEDT; Robin LEMMENS; Peter VANACKER; Fenne VANDERVORST; Adriana-Bastos CONFORTO; Raquel-C.T. HIDALGO; Daissy-Liliana MORA-CUERVO; Luciana DE-OLIVEIRA-NEVES; Isabelle LAMEIRINHAS-DA-SILVA; Rodrigo-Targa MARTÍNS; Letícia-C. REBELLO; Igor-Bessa SANTIAGO; Teodora SADELAROVA; Rosen KALPACHKI; Filip ALEXIEV; Elena-Adela CORA; Michael-E. KELLY; Lissa PEELING; Aleksandra PIKULA; Hui-Sheng CHEN; Yimin CHEN; Shuiquan YANG; Marina ROJE-BEDEKOVIC; Martin ČABAL; Dusan TENORA; Petr FIBRICH; Pavel DUŠEK; Helena HLAVÁČOVÁ; Emanuela HRABANOVSKA; Lubomír JURÁK; Jana KADLČÍKOVÁ; Igor KARPOWICZ; Lukáš KLEČKA; Martin KOVÁŘ; Jiří NEUMANN; Hana PALOUŠKOVÁ; Martin REISER; Vladimir ROHAN; Libor ŠIMŮNEK; Ondreij SKODA; Miroslav ŠKORŇA; Martin ŠRÁMEK; Nicolas DRENCK; Khalid SOBH; Emilie LESAINE; Candice SABBEN; Peggy REINER; Francois ROUANET; Daniel STRBIAN; Stefan BOSKAMP; Joshua MBROH; Simon NAGEL; Michael ROSENKRANZ; Sven POLI; Götz THOMALLA; Theodoros KARAPANAYIOTIDES; Ioanna KOUTROULOU; Odysseas KARGIOTIS; Lina PALAIODIMOU; José-Dominguo BARRIENTOS-GUERRA; Vikram HUDED; Shashank NAGENDRA; Chintan PRAJAPATI; P.N. SYLAJA; Achmad-Firdaus SANI; Abdoreza GHOREISHI; Mehdi FARHOUDI; Elyar SADEGHI-HOKMABADI; Mazyar HASHEMILAR; Sergiu-Ionut SABETAY; Fadi RAHAL; Maurizio ACAMPA; Alessandro ADAMI; Marco LONGONI; Raffaele ORNELLO; Leonardo RENIERI; Michele ROMOLI; Simona SACCO; Andrea SALMAGGI; Davide SANGALLI; Andrea ZINI; Kenichiro SAKAI; Hiroki FUKUDA; Kyohei FUJITA; Hirotoshi IMAMURA; Miyake KOSUKE; Manabu SAKAGUCHI; Kazutaka SONODA; Yuji MATSUMARU; Nobuyuki OHARA; Seigo SHINDO; Yohei TAKENOBU; Takeshi YOSHIMOTO; Kazunori TOYODA; Takeshi UWATOKO; Nobuyuki SAKAI; Nobuaki YAMAMOTO; Ryoo YAMAMOTO; Yukako YAZAWA; Yuri SUGIURA; Jang-Hyun BAEK; Si-Baek LEE; Kwon-Duk SEO; Sung-Il SOHN; Jin-Soo LEE; Anita-Ante ARSOVSKA; Chan-Yong CHIEH; Wan-Asyraf WAN-ZAIDI; Wan-Nur-Nafisah WAN-YAHYA; Fernando GONGORA-RIVERA; Manuel MARTINEZ-MARINO; Adrian INFANTE-VALENZUELA; Diederik DIPPEL; Dianne-H.K. VAN-DAM-NOLEN; Teddy-Y. WU; Martin PUNTER; Tajudeen-Temitayo ADEBAYO; Abiodun-H. BELLO; Taofiki-Ajao SUNMONU; Kolawole-Wasiu WAHAB; Antje SUNDSETH; Amal-M. AL-HASHMI; Saima AHMAD; Umair RASHID; Liliana RODRIGUEZ-KADOTA; Miguel-Ángel VENCES; Patrick-Matic YALUNG; Jon-Stewart-Hao DY; Waldemar BROLA; Aleksander DĘBIEC; Malgorzata DOROBEK; Michal-Adam KARLINSKI; Beata-M. LABUZ-ROSZAK; Anetta LASEK-BAL; Halina SIENKIEWICZ-JAROSZ; Jacek STASZEWSKI; Piotr SOBOLEWSKI; Marcin WIĄCEK; Justyna ZIELINSKA-TUREK; André-Pinho ARAÚJO; Mariana ROCHA; Pedro CASTRO; Patricia FERREIRA; Ana-Paiva NUNES; Luísa FONSECA; Teresa PINHO-E-MELO; Miguel RODRIGUES; M-Luis SILVA; Bogdan CIOPLEIAS; Adela DIMITRIADE; Cristian FALUP-PECURARIU; May-Adel HAMID; Narayanaswamy VENKETASUBRAMANIAN; Georgi KRASTEV; Jozef HARING; Oscar AYO-MARTIN; Francisco HERNANDEZ-FERNANDEZ; Jordi BLASCO; Alejandro RODRÍGUEZ-VÁZQUEZ; Antonio CRUZ-CULEBRAS; Francisco MONICHE; Joan MONTANER; Soledad PEREZ-SANCHEZ; María-Jesús GARCÍA-SÁNCHEZ; Marta GUILLÁN-RODRÍGUEZ; Gianmarco BERNAVA; Manuel BOLOGNESE; Emmanuel CARRERA; Anchalee CHUROJANA; Ozlem AYKAC; Atilla-Özcan ÖZDEMIR; Arsida BAJRAMI; Songul SENADIM; Syed-I. HUSSAIN; Seby JOHN; Kailash KRISHNAN; Robert LENTHALL; Kaiz-S. ASIF; Kristine BELOW; Jose BILLER; Michael CHEN; Alex CHEBL; Marco COLASURDO; Alexandra CZAP; Adam-H. DE-HAVENON; Sushrut DHARMADHIKARI; Clifford-J. ESKEY; Mudassir FAROOQUI; Steven-K. FESKE; Nitin GOYAL; Kasey-B. GRIMMETT; Amy-K. GUZIK; Diogo-C. HAUSSEN; Majesta HOVINGH; Dinesh JILLELA; Peter-T. KAN; Rakesh KHATRI; Naim-N. KHOURY; Nicole-L. KILEY; Murali-K. KOLIKONDA; Stephanie LARA; Grace LI; Italo LINFANTE; Aaron-I. LOOCHTAN; Carlos-D. LOPEZ; Sarah LYCAN; Shailesh-S. MALE; Fadi NAHAB; Laith MAALI; Hesham-E. MASOUD; Jiangyong MIN; Santiago ORGETA-GUTIERREZ; Ghada-A. MOHAMED; Mahmoud MOHAMMADEN; Krishna NALLEBALLE; Yazan RADAIDEH; Pankajavalli RAMAKRISHNAN; Bliss RAYO-TARANTO; Diana-M. ROJAS-SOTO; Sean RULAND; Alexis-N. SIMPKINS; Sunil-A. SHETH; Amy-K. STAROSCIAK; Nicholas-E. TARLOV; Robert-A. TAYLOR; Barbara VOETSCH; Linda ZHANG; Hai-Quang DUONG; Viet-Phuong DAO; Huynh-Vu LE; Thong-Nhu PHAM; Mai-Duy TON; Anh-Duc TRAN; Osama-O. ZAIDAT; Paolo MACHI; Elisabeth DIRREN; Claudio RODRÍGUEZ-FERNÁNDEZ; Jorge ESCARTÍN-LÓPEZ; Jose-Carlos FERNÁNDEZ-FERRO; Niloofar MOHAMMADZADEH; Neil-C. SURYADEVARA,-MD; Beatriz DE-LA-CRUZ-FERNÁNDEZ; Filipe BESSA; Nina JANCAR; Megan BRADY; Dawn SCOZZARI.
Journal of Stroke ; : 256-265, 2022.
Artigo em Inglês | WPRIM | ID: wpr-938173

RESUMO

Background@#and Purpose Recent studies suggested an increased incidence of cerebral venous thrombosis (CVT) during the coronavirus disease 2019 (COVID-19) pandemic. We evaluated the volume of CVT hospitalization and in-hospital mortality during the 1st year of the COVID-19 pandemic compared to the preceding year. @*Methods@#We conducted a cross-sectional retrospective study of 171 stroke centers from 49 countries. We recorded COVID-19 admission volumes, CVT hospitalization, and CVT in-hospital mortality from January 1, 2019, to May 31, 2021. CVT diagnoses were identified by International Classification of Disease-10 (ICD-10) codes or stroke databases. We additionally sought to compare the same metrics in the first 5 months of 2021 compared to the corresponding months in 2019 and 2020 (ClinicalTrials.gov Identifier: NCT04934020). @*Results@#There were 2,313 CVT admissions across the 1-year pre-pandemic (2019) and pandemic year (2020); no differences in CVT volume or CVT mortality were observed. During the first 5 months of 2021, there was an increase in CVT volumes compared to 2019 (27.5%; 95% confidence interval [CI], 24.2 to 32.0; P<0.0001) and 2020 (41.4%; 95% CI, 37.0 to 46.0; P<0.0001). A COVID-19 diagnosis was present in 7.6% (132/1,738) of CVT hospitalizations. CVT was present in 0.04% (103/292,080) of COVID-19 hospitalizations. During the first pandemic year, CVT mortality was higher in patients who were COVID positive compared to COVID negative patients (8/53 [15.0%] vs. 41/910 [4.5%], P=0.004). There was an increase in CVT mortality during the first 5 months of pandemic years 2020 and 2021 compared to the first 5 months of the pre-pandemic year 2019 (2019 vs. 2020: 2.26% vs. 4.74%, P=0.05; 2019 vs. 2021: 2.26% vs. 4.99%, P=0.03). In the first 5 months of 2021, there were 26 cases of vaccine-induced immune thrombotic thrombocytopenia (VITT), resulting in six deaths. @*Conclusions@#During the 1st year of the COVID-19 pandemic, CVT hospitalization volume and CVT in-hospital mortality did not change compared to the prior year. COVID-19 diagnosis was associated with higher CVT in-hospital mortality. During the first 5 months of 2021, there was an increase in CVT hospitalization volume and increase in CVT-related mortality, partially attributable to VITT.

3.
Journal of Stroke ; : 302-311, 2019.
Artigo em Inglês | WPRIM | ID: wpr-766261

RESUMO

BACKGROUND AND PURPOSE: Current guidelines do not provide firm directions on atrial fibrillation (AF) screening after ischemic stroke (IS). We sought to investigate the association of implantable cardiac monitoring (ICM) duration with the yield of AF detection in IS patients. METHODS: We included studies reporting AF detection rates by ICM in IS patients with negative initial AF screening. We excluded studies reporting prolonged cardiac monitoring with devices other than ICM, not providing AF detection rates or monitoring duration, and reporting overlapping data for the same population. The random-effects model was used for all pooled estimates and meta-regression analyses. RESULTS: We included 28 studies (4,531 patients, mean age 65 years). In meta-regression analyses, the proportion of AF detection by ICM was independently associated with monitoring duration (coefficient=0.015; 95% confidence interval [CI], 0.005 to 0.024) and mean patient age (coefficient=0.009; 95% CI, 0.003 to 0.015). No associations were detected with other patient characteristics, including IS subtype (cryptogenic vs. embolic stroke of undetermined source) or time from IS onset to CM implantation. In subgroup analyses, significant differences (P12 and ≤24 months: 26% [95% CI, 22% to 31%]; >24 months: 34% [95% CI, 29% to 39%]). CONCLUSIONS: Extended duration of ICM monitoring and increased patient age are factors that substantially increase AF detection in IS patients with initial negative AF screening.


Assuntos
Humanos , Fibrilação Atrial , Programas de Rastreamento , Acidente Vascular Cerebral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA