Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Adicionar filtros








Intervalo de ano
1.
Journal of Southern Medical University ; (12): 843-849, 2020.
Artigo em Chinês | WPRIM | ID: wpr-828889

RESUMO

OBJECTIVE@#To develop a fast, sensitive and cost-effective method based on resonance light scattering (RLS) for characterization of protein solubility to facilitate detection of changes in solubility of mutant proteins.@*METHODS@#We examined the response curve of RLS intensities to the protein concentrations in synchronous scanning mode. The curve intersection points were searched to predict the maximal concentrations of the protein in dispersion state, which defined the solubility of the protein in this given state. Bovine serum albumin (BSA, 0-50 g/L) was used as the model to investigate the influences of pH values (6.5, 7.0, and 7.4) and salt concentrations (0.05, 0.10, 0.15, and 0.20 mol/L) on the determined solubility. The solubility of glutathione S-transferase isoenzymes alpha (GSTA, 0-27.0 g/L) and Mμ (GSTM, 0-20.0 g/L) were estimated for comparison. The RLS-based method was used to determine the solubility of uricase (MGU, 0-0.4 g/L) to provide assistance in improving the solubility of its mutants.@*RESULTS@#We identified two intersection points in the RLS response curves of the tested proteins, among which the lower one represented an approximation of the maximal concentration (or the solubility of the protein) in single molecular dispersion, and the higher one the saturated concentration of the protein in multiple molecular aggregation. In HEPES buffer, the two intersection points of BSA (isoelectric point 4.6) both increased with the increase of pH (6.5-7.4), and their values were ~1.2 g/L and ~33 g/L at pH 7.4, respectively; the latter concentration approached the solubility of commercial BSA in the same buffer at the same pH. The addition of NaCl reduced the values of the two intersection points, and increasing salt ion concentration decreased the values of the lower intersection points. Further characterizations of GSTA and GSTM showed that the low concentration intersection points of the two proteins were ~0.7 g/L and ~0.8 g/L, and their high concentration intersection points were ~10 g/L and ~11 g/L, respectively, both lower than those of BSA, indicating the feasibility of the direct characterization of protein solubility by RLS. The two concentration intersection points of MGU were 0.24 g/L and 0.30 g/L, respectively, and the low concentration intersection point of its selected mutant was increased by 2 times.@*CONCLUSIONS@#RLS allows direct characterization of the solubility of macromolecular proteins. This method, which is simple and sensitive and needs only a small amount of proteins, has a unique advantage for rapid comparison of solubility of low-abundance protein mutants.


Assuntos
Concentração de Íons de Hidrogênio , Luz , Espalhamento de Radiação , Solubilidade , Análise Espectral
2.
Chinese Journal of Biotechnology ; (12): 513-521, 2019.
Artigo em Chinês | WPRIM | ID: wpr-771356

RESUMO

To explore the immobilization of target proteins for screening libraries of ligand mixtures, magnetic submicron particles (MSP) functionalized with Ni²⁺-NTA and carboxyl were compared for the immobilization of Mycobacterium tuberculosis dihydrofolate reductase (MtDHFR). MtDHFR fused with 6×His was expressed, purified and characterized for kinetics. MtDHFR was immobilized on Ni²⁺-NTA-functionalized MSP directly and carboxyl-functionalized MSP upon activation. The immobilization capacity, residual activity, thermostability and affinities for putative inhibitors were characterized. MtDHFR immobilized on Ni²⁺-NTA-functionalized MSP retained about 32% activity of the free one with the immobilization capacity of (93±12) mg/g of MSP (n=3). Ni²⁺ and EDTA synergistically inhibited MtDHFR activity, while Fe³⁺ had no obvious interference. MtDHFR immobilized on carboxyl-functionalized MSP retained (87±4)% activity of the free one with the immobilization capacity of (8.6±0.6) mg/g MSP (n=3). In 100 mmol/L HEPES (pH 7.0) containing 50 mmol/L KCl, there was no significant loss of the activities of the free and immobilized MtDHFR after storage at 0 °C for 16 h, but nearly 60% and 35% loss of their activities after storage at 25 °C for 16 h, respectively. The inhibition effects of methotrexate on the immobilized and free MtDHFR were consistent (P>0.05). The immobilization of MtDHFR on carboxyl-functionalized MSP was thus favorable for higher retained activity and better thermostability, with promise for rapid screening of its ligand mixtures.


Assuntos
Estabilidade Enzimática , Enzimas Imobilizadas , Concentração de Íons de Hidrogênio , Cinética , Ligantes , Nanopartículas de Magnetita , Mycobacterium tuberculosis , Temperatura , Tetra-Hidrofolato Desidrogenase
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA