Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Adicionar filtros








Intervalo de ano
1.
Chinese Journal of Biotechnology ; (12): 1847-1858, 2022.
Artigo em Chinês | WPRIM | ID: wpr-927822

RESUMO

Myostatin gene (MSTN) encodes a negative regulator for controlling skeletal muscle growth in animals. In this study, MSTN-/- homozygous mutants with "double muscle" phenotypic traits and stable inheritance were bred on the basis of MSTN gene editing rabbits, with the aim to establish a method for breeding homozygous progeny from primary MSTN biallelic mutant rabbits. MSTN-/- primary mutant rabbits were generated by CRISPR/Cas9 gene editing technology. The primary mutant rabbits were mated with wild type rabbits to produce F1 rabbits, whereas the F2 generation homozygous rabbits were bred by half-sibling mating or backcrossing with F1 generation rabbits of the same mutant strain. Sequence analysis of PCR products and its T vector cloning were used to screen homozygous rabbits. The MSTN mutant rabbits with 14-19 week-old were weighed and the difference of gluteus maximus tissue sections and muscle fiber cross-sectional area were calculated and analyzed. Five primary rabbits with MSTN gene mutation were obtained, among which three were used for homozygous breeding. A total of 15 homozygous rabbits (5 types of mutants) were obtained (M2-a: 3; M2-b: 2; M3-a: 2; M7-a: 6; M7-b: 2). The body weight of MSTN-/- homozygous mutant rabbits aged 14-19 weeks were significantly higher than that of MSTN+/+ wild-type rabbits of the same age ((2 718±120) g vs. (1 969±53) g, P < 0.01, a 38.0% increase). The mean cross sections of gluteus maximus muscle fiber in homozygous mutant rabbits were not only significantly higher than that of wild type rabbits ((3 512.2±439.2) μm2 vs. (1 274.8±327.3) μm2, P < 0.01), but also significantly higher than that of MSTN+/- hemizygous rabbits ((3 512.2±439.2) μm2 vs. (2 610.4±604.4) μm2, P < 0.05). In summary, five homozygous mutants rabbits of MSTN-/- gene were successfully bred, which showed a clear lean phenotype. The results showed that the primary breeds were non-chimeric mutant rabbits, and the mutant traits could be inherited from the offspring. MSTN-/- homozygous mutant rabbits of F2 generation could be obtained from F1 hemizygous rabbits by inbreeding or backcrossing. The progenies of the primary biallelic mutant rabbits were separated into two single-allelic mutants, both of which showed a "double-muscle" phenotype. Thus, this study has made progress in breeding high-quality livestock breeds with gene editing technology.


Assuntos
Animais , Coelhos , Sistemas CRISPR-Cas/genética , Edição de Genes , Músculo Esquelético/metabolismo , Mutação , Miostatina/metabolismo , Fenótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA