Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Adicionar filtros








Intervalo de ano
1.
Chinese Pharmacological Bulletin ; (12): 422-428, 2022.
Artigo em Chinês | WPRIM | ID: wpr-1014143

RESUMO

Aim To investigate the role of mechano- sensitive ion channel Piezol in regulating electrical re-modeling of atrial myocytes induced by hypertension and to further explore the potential mechanisms.Methods Spontaneously hypertensive rats ( SHR ) aged 30 - 32 weeks treated with or without valsartan (30 mg • kg 1 • d 1 ) were used.Wistar rats were used as control.Western blot was used to detect the protein expression of Piezol , Src and Cavl.2 in atrial appendages of rats and in atrial myocytes ( HL-1 cells) exposed to different levels of high hydrostatic pressure (20 and 40 mmHg) , Piezol inhibitor (GsmTx4) and agonist ( Yodal ) in vitro.Whole-cell patch clamp technique was employed to detect L-tvpe calcium current (ICa, ) and action potential duration ( APD) of atrial myocytes.Results Compared with Wistar rats in control group, the protein expressions of Piezol and Src significantly increased and the expression of Cavl.2 decreased in SHR group (P < 0.05 ), while the a- bove changes could he reversed in SHR treated with valsartan( P < 0.05 ) .Meanwhile, higher hydrostatic pressure (40 mniHg) could increase the expressions of Piezol and Src in HL-1 cells( P <0.05) and decrease the protein expression of Cavl.2 (P <0.05 ) , accompanied by a shortened APD and a decreased ICa,.GsmTx4 could significantly reverse the above changes.In addition, Piezol agonist Yodal could simulate electrical remodeling and related signal molecule changes in atrial myocytes induced by the high hydrostatic pressure.Conclusions Mechanosensitive ion channel Piezol participates in electrical remodeling induced by hypertension via activating Src kinase signaling pathway and then leading to the decrease of ICa ,.

2.
Chinese Pharmacological Bulletin ; (12): 631-637, 2021.
Artigo em Chinês | WPRIM | ID: wpr-1014410

RESUMO

Aim To observe the effects of sacubitril/valsartan (Sac/Val, LCZ696) on atrial remodeling and atrial fibrillation (AF) susceptibility in spontaneously hypertensive rats (SHR). Methods Twenty-four 7-week-old male SHR were randomly divided into SHR group, SHR + Val group (30 mg · kg

3.
Chinese Pharmacological Bulletin ; (12): 922-928, 2021.
Artigo em Chinês | WPRIM | ID: wpr-1014460

RESUMO

Aim To investigate the mechanism of TET1 in cardiac fibrosis induced by high pressure. Methods Wistar rats and spontaneous hypertension rats(SHR) were selected to detected the expression of TET1, TGF-β, COL-1 and COL-3 in myocardium by Western blot; HE and Masson staining were used to detect myocardial pathological changes. Neonatal rat cardiac fibroblasts (NRCFs) were isolated from the ventricles of neonatal Sprague-Dawley rats and stimulated by 0 mm-Hg, 120 mmHg and 180 mmHg high pressure. Immunofluorescence was used to detect the changes of 5-hmC in the NRCFs. The changes of 5-hmC and 5-mC in TGF-β promoter region were detected by qRT-PCR. The expressions of TET1, TGF-β, COL-1 and COL-3 were detected by Western blot. Results Compared with Wistar rats, SHR showed increased blood pressure, increased fibrous collagen in ventricular tissues, and significantly increased expressions of TET1, TGF-P, COL-1 and COL-3. Compared with the 0 mmHg group, 120 mmHg and 180 mmHg group significantly induced the increase of TET1, 5-hmC, TGF-p, COL-1 and COL-3. TET1 knockdown significantly reduced the increase of 5-hmC, TGF-β, COL-1 and COL-3 under 180 mmHg pressure. Besides, knockdown TET1 significantly reduced the level of 5-hmC and increased the level of 5-mC and 5-hmC in the TGF-β promoter region. Conclusions High pressure induced cardiac fibrosis is associated with the promotion of TGF-β promoter demethylation and the increased of TGF-β expression by TET1.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA