Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Adicionar filtros








Intervalo de ano
1.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 76-84, 2021.
Artigo em Chinês | WPRIM | ID: wpr-906489

RESUMO

Objective:To explore the possible mechanism of Chloriti Lapis in the treatment of epilepsy by the metabonomics of brain tissue in pentylenetetrazol (PTZ)-kindled epileptic rats treated with Chloriti Lapis. Method:The epileptic animal model in rats was established by PTZ kindling, and the rats were divided into the control group, model group, carbamazepine group and Chloriti Lapis group. The brain tissue samples were detected by ultra-high performance liquid chromatography-quadrupole time-of-flight mass spectrometry(UPLC/Q-TOF-MS), and the experimental results were statistically analyzed by partial least squares-discriminant analysis (PLS-DA) and SPSS 18.0. Result:The metabolic fingerprints and metabolic profiles of the rat brain tissue were established, which showed that the metabolic profiles of each group had changed significantly and could be separated well among the groups. Moreover, the Chloriti Lapis group had a tendency to be closer to the control group than the carbamazepine group. Seven differential metabolites were screened, including phosphatidylserine (PS) (18∶0/18∶0), <italic>L</italic>-glutamic acid, docosahexaenoyl ethanolamide, arachidonic acid, glucosylsphingosine, cholestane-3,7,12,24,25-pentol and lysophosphatidylcholine (LysoPC) (P-18∶0). Except for docosahexaenoyl ethanolamide and LysoPC (P-18∶0), Chloriti Lapis had significant intervening and regulating effects on the other five differential metabolites. There were 12 possible metabolic pathways that affected the metabolic disorder of PTZ-kindled rats, and 3 important metabolic pathways (pathway impact>0.1), namely, <italic>D-</italic>glutamine and <italic>D-</italic>glutamate metabolism, alanine, aspartate and glutamate metabolism, and arachidonic acid metabolism, among which <italic>D-</italic>glutamine and <italic>D-</italic>glutamate metabolism was the most important metabolic pathways. Conclusion:From this point of view, Chloriti Lapis has a clear intervention effect on PTZ-kindled epileptic rats, which may be related to the intervention of the above differential metabolite contents and related metabolic pathways. It can reduce the toxic effect of excitatory neurotransmitters on neurons in brain tissue and inhibit the development of inflammation in brain tissue, so as to maintain the biological function of brain cells and slow down the occurrence of epilepsy.

2.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 130-138, 2021.
Artigo em Chinês | WPRIM | ID: wpr-906433

RESUMO

Objective:To investigate the effect of Chloriti Lapis on metal elements in brain tissue and plasma of epileptic rats kindled by pentylenetetrazol (PTZ), and to explore the possible material basis of Chloriti Lapis. Method:PTZ kindling method was used to establish epileptic rat model. Inductively coupled plasma mass spectrometry (ICP-MS) and inductively coupled plasma optical emission spectrometer (ICP-OES) were used to determine the contents of metal elements in brain tissue and plasma of the blank group, model group, carbamazepine group (0.1 g·kg<sup>-1</sup>) and Chloriti Lapis group (2 g·kg<sup>-1</sup>). The data were statistically analyzed by SPSS 18.0 software. Result:Compared with the blank group, the contents of Sr, Sb and Ba in brain tissue of rats in the model group were significantly increased (<italic>P</italic><0.05, <italic>P</italic><0.01), while the contents of Zn, Fe, Cu, K, Li, Co, Sn and Pb were significantly decreased (<italic>P</italic><0.05, <italic>P</italic><0.01). Compared with the model group, the contents of Zn, Fe, K, Li, Co, As and Pb in brain tissue of rats in the Chloriti Lapis group were obviously increased (<italic>P</italic><0.05, <italic>P</italic><0.01), while the contents of Sr and Sb were significantly decreased (<italic>P</italic><0.01). These results showed that Chloriti Lapis had positive effect on the regulation of the content of metal elements in rat brain tissue to normal level, the intervention effect was clear, and the overall effect was better than that of carbamazepine group. The determination of 21 metal elements in plasma showed that compared with the blank group, the levels of K, Sr and Cd in the model group were significantly increased (<italic>P</italic><0.05), and the contents of Li, Al, Ti and Cr were significantly decreased (<italic>P</italic><0.05). Compared with the model group, the contents of Ca, K, Li, Al and V in the Chloriti Lapis group were obviously increased (<italic>P</italic><0.05, <italic>P</italic><0.01), and the contents of Fe, Ti, Sr and Cd were significantly decreased (<italic>P</italic><0.05,<italic>P</italic><0.01). The correlation analysis of metal elements among the groups showed that there were 17 pairs of elements had positively correlation in the brain tissue of rats, 2 pairs of elements had significant negative correlation. In the plasma of rats, 8 pairs of elements had significant positive correlation and 6 pairs of elements had significant negative correlation. Conclusion:The metal element groups represented by Zn, Fe, K, Li, Co, As, Pb, Sr, Sb, Ca, Al, V, Ti and Cd may be the effective material basis for Chloriti Lapis to interfere PTZ-kindled epileptic model rats, which may be related to the influence of these metal element groups on the release of neurotransmitters and the electrical balance of neurons, the regulation of abnormal synchronous discharge induced by Na<sup>+</sup>, K<sup>+</sup>, Ca<sup>2+</sup> channel disorders and intervention of metabolism pathways in brain tissue related to epilepsy. It can make the excitatory and inhibitory activities restrain each other, and finally reach the normal physiological state of neurons and cells. The intervention effect of Chloriti Lapis group was better than that of carbamazepine group.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA