Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Adicionar filtros








Intervalo de ano
1.
Electron. j. biotechnol ; 26: 33-39, Mar. 2017. ilus, tab, graf
Artigo em Inglês | LILACS | ID: biblio-1009005

RESUMO

Background: Assessments of genetic diversity are essential for germplasm characterization and exploitation. Molecular markers are valuable tools for exploring genetic variation and identifying germplasm. They play key roles in a Xanthoceras sorbifolia breeding program. Results: We analyzed the genetic diversity of populations of this species using 23 simple sequence repeat (SSR) loci and data on kernel oil content. The 11 populations included in the study were distributed across a large geographic range in China. The kernel oil content differed significantly among populations. The SSR marker analysis detected high genetic diversity among the populations. All SSRs were polymorphic, and we identified 80 alleles across the populations. The number of alleles at each locus ranged from two to six, averaging 3.48 per primer pair. The polymorphism information content values ranged from 0.35 to 0.70, averaging 0.51. Expected heterozygosity, observed heterozygosity, and Shannon's information index calculations detected large genetic variations among populations of different provenance. The high average number of alleles per locus and the allelic diversity observed in the set of genotypes analyzed indicated that the genetic base of this species was relatively wide. The statistically significant positive correlation between genetic and geographic distances suggested adaptations to local conditions. Conclusions: Microsatellite markers can be used to efficiently distinguish X. sorbifolia populations and assess their genetic diversity. The information we have provided will contribute to the conservation and management of this important plant genetic resource.


Assuntos
Variação Genética , Repetições de Microssatélites , Sapindaceae/genética , Fenótipo , Polimorfismo Genético , Sementes/genética , Óleos de Plantas , Marcadores Genéticos , China , Reação em Cadeia da Polimerase , DNA de Plantas
2.
Electron. j. biotechnol ; 17(6): 268-274, Nov. 2014. ilus, graf, tab
Artigo em Inglês | LILACS | ID: lil-730257

RESUMO

Background Genetic diversity and genetic variation of 10 populations and subpopulations of Magnolia wufengensis, a new and endangered endemic species, were examined by inter simple sequence repeat (ISSR) and sequence-related amplified polymorphism (SRAP) molecular markers. Compared with other endangered endemic Magnolia taxa, M. wufengensis holds a relatively high level of genetic variation. Result Total genetic diversity was found to be 87.7% for ISSR and 88.0% for SRAP markers. For polymorphic loci (P), the effective mean number of alleles (Ae) was 1.414 for ISSR markers and 1.458 for SRAP markers, while the mean expected heterozygosity (H) was 0.256 using ISSR and 0.291 for SRAP markers. Within-population variation was estimated for P as 74.9% using ISSR and 74.6% with SRAP markers; the number of alleles Ae was 1.379 with ISSR and 1.397 for SRAP and H 0.235 with ISSR and 0.247 for SRAP markers. Conclusion The analysis of molecular variation of both ISSR and SRAP marker systems indicated that most genetic variation is within populations, with values of 90.64% and 82.92% respectively. Mantel tests indicated a moderate association between the two marker systems and a low correlation between genetic and geographic distances. High levels of genetic diversity and low levels of population divergence suggest that genetic drift is not currently of great concern for this species. Severe habitat loss and fragmentation, predominantly ascribed to anthropogenic pressures, caused in-situ developing restriction of this species. Action for conserving this rare species for its long-term survival should be taken immediately.


Assuntos
Polimorfismo Genético , Variação Genética , Repetições de Microssatélites , Magnolia/genética , DNA/isolamento & purificação , Sequência de Bases , Marcadores Genéticos , Análise por Conglomerados , Análise de Variância , Magnoliaceae , Estruturas Genéticas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA