Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Adicionar filtros








Intervalo de ano
1.
Braz. j. med. biol. res ; 55: e12072, 2022. tab, graf
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1384151

RESUMO

Constitutional genomic imbalances are known to cause malformations, disabilities, neurodevelopmental delay, and dysmorphia and can lead to dysfunctions in the cell cycle. In extremely rare genetic conditions such as small supernumerary marker chromosomes (sSMC), it is important to understand the cellular consequences of this extra marker, as well the factors that contribute to their maintenance or elimination through successive cell cycles and phenotypic impact. The study of chromosomal mosaicism provides a natural model to characterize the effect of aneuploidy on genome stability and compare cells with the same genetic background and environment exposure, but differing in the presence of sSMC. Here, we report the functional characterization of different cell lines from two familial patients with mosaic sSMC derived from chromosome 12. We performed studies of proliferation dynamics, stability, and variability of these cells using fluorescent in situ hybridization (FISH), sister chromatid exchanges (SCE), and conventional staining. We also quantified the telomere-related genomic instability of sSMC cells using 3D telomeric profile analysis by quantitative-FISH. sSMC cells exhibited differences in the cell cycle dynamics compared to normal cells. First, the sSMC cells exhibited lower proliferation index and higher frequency of SCE than normal cells, associated with a higher level of chromosomal instability. Second, sSMC cells exhibited more telomeric-related genomic instability. Lastly, the differences of sSMC cells distribution among tissues could explain different phenotypic repercussions observed in patients. These results will help in our understanding of the sSMC stability, maintenance during cell cycle, and the cell cycle variables involved in the different phenotypic manifestations.

2.
Saudi Journal of Medicine and Medical Sciences [SJMMS]. 2015; 3 (3): 238-240
em Inglês | IMEMR | ID: emr-174564

RESUMO

This case report describes an 8-year-old female, who presented with repeated chest infections. She was screened for acid fast bacilli, immune deficiency syndrome, and cystic fibrosis. The computed tomography scan revealed collapsed left upper lobe with multiple cystic lesions in the lingula. Bronchoscopy was performed, and a foreign body was removed. This diagnosis is still considered a missed and an overlooked [forgotten] diagnosis

3.
AJMB-Avicenna Journal of Medical Biotechnology. 2011; 3 (1): 25-29
em Inglês | IMEMR | ID: emr-109407

RESUMO

Genomic Signal Processing is a relatively new field in bioinformatics, in which signal processing algorithms and methods are used to study functional structures in the DNA. An appropriate mapping of the DNA sequence into one or more numerical sequences enables the use of many digital signal processing tools in the analysis of different genomic sequences. Also, a novel Influenza A [H1N1] virus of swine origin emerged in the spring of 2009 and spread very rapidly among people. The severity of the disease and the number of deaths caused by a pandemic virus varies greatly and can change over time. Throughout this work, Pandemic H1N1 genomic sequences were characterized according to nonlinear dynamical features such as moment invariants and largest Lyapunov exponents and then compared to those features that extracted from classical H1N1 genomic sequences. The proposed methods were applied to a number of sequences encoded into a time series using a coding measure scheme employing Electron-Ion Interaction Pseudopotential [EIIP]. The aim of this work is to extract genomic features that can distinguish the new swine flu from the classical H1N1 existed before using sequences from segment 8 of the influenza genome that consists of 8 RNA segments which encodes two important proteins for immune system attack [NS1 and NS2]. According to the obtained results it is evident that variability is present based on a significance test in both groups; pandemic and classical H1N1 sequences


Assuntos
DNA , Genoma , Pandemias
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA