Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Adicionar filtros








Intervalo de ano
1.
Biol. Res ; 39(3): 505-520, 2006. ilus
Artigo em Inglês | LILACS | ID: lil-437383

RESUMO

We used the single-microelectrode voltage-clamp technique to record ionic currents from pancreatic â-cells within intact mouse islets of Langerhans at 37C, the typical preparation for studies of glucose-induced "bursting" electrical activity. Cells were impaled with intracellular microelectrodes, and voltage pulses were applied in the presence of tetraethylammonium. Under these conditions, a voltage-dependent Ca2+ current (I Cav), containing L-type and non-L-type components, was observed. The current measured in situ was larger than that measured in single cells with whole-cell patch clamping, particularly at membrane potentials corresponding to the action potentials of â-cell electrical activity. The temperature dependence of I Cav was not sufficient to account for the difference in size of the currents recorded with the two methods. During prolonged pulses, the voltage-dependent Ca2+ current measured in situ displayed both rapid and slow components of inactivation. The rapid component was Ca2+-dependent and was inhibited by the membrane-permeable Ca2+ chelator, BAPTA-AM. The effect of BAPTA-AM on â-cell electrical activity then demonstrated that Ca2+-dependent inactivation of I Cav contributes to action potential repolarization and to control of burst frequency. Our results demonstrate the utility of voltage clamping â-cells in situ for determining the roles of ion channels in electrical activity and insulin secretion.


Assuntos
Animais , Camundongos , Canais de Cálcio/fisiologia , Células Secretoras de Insulina/fisiologia , Potenciais da Membrana/fisiologia , Eletrofisiologia , Células Secretoras de Insulina/efeitos dos fármacos , Microeletrodos , Técnicas de Patch-Clamp , Tetraetilamônio/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA