Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Adicionar filtros








Intervalo de ano
1.
Chinese Journal of Lung Cancer ; (12): 196-203, 2021.
Artigo em Chinês | WPRIM | ID: wpr-880258

RESUMO

Lung cancer has the highest incidence rate and mortality in China, even in the world, and non-small cell lung cancer (NSCLC) accounts for about 85%. The growth and metastasis of tumor depend on the generation of blood vessels, and anti-angiogenic therapy is playing an increasingly important role, however, no significant improvement was observed in the underwent anti-angiogenic agents used for patients alone. In recent years, the application of immune checkpoint inhibitor (ICI) has significantly improved the prognosis of some lung cancer patients, however, the objective response rate of patients receiving ICI alone is low. While anti-angiogenic agents and ICI both regulate the tumor immune microenvironment and have a potential synergistic mechanism, showing a bright prospect in the combined application of anti-tumor therapy. In this review, we focused on the research and application of anti-angiogenic agents in combination with ICI in advanced non-small cell lung cancer.

2.
Chinese Journal of Tissue Engineering Research ; (53): 6109-6113, 2015.
Artigo em Chinês | WPRIM | ID: wpr-480609

RESUMO

BACKGROUND:Lumbar spinal stenosis can result in lumbar nerve root pain and other symptoms or even disability, which seriously impacts people’s quality of life. Interbody fusion is the main clinical treatment. Studies have shown that an interspinous fusion cage is prone to have hairline fractures and loss of implant; therefore, biomechanical properties and biocompatibility of the interbody fusion cage at L4/5need to be studied. OBJECTIVE:To analyze the stability of the interspinous fusion cage at L4/5, and to explore the biomechanical properties and biocompatibility of adjacent segments. METHODS: Ten adult fresh frozen spine specimens were selected and divided into normal group and model group, with five specimens in each group. The specimens were numbered and placed in a special fixture. The interspinous fusion cage, made in Zhengzhou Cast Medical Instrument Co., Ltd., China, was implantedin vivo and fixed using a cage fixator made of Ti6AL-4V ELI. RESULTS AND CONCLUSION:Artificial vertebral bodies had less strain changes than the normal vertebrae in different implantation positions in terms of central compression, anteflexion, rear protraction, lateroflexion (P < 0.05). During vertebral displacement under the maximum load of 500 N, the linear displacement and angular displacement in anteflexion, rear protraction, left lateral flexion, levorotation were decreased significantly in the model group than the normal group (P < 0.05). These findings indicate that the interspinous fusion cage can maximaly preserve the range of motion of the injured vertebral body, maintain the stability of the segment, and reduce the stress of the intervertebral disc.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA