Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Adicionar filtros








Intervalo de ano
1.
Mem. Inst. Oswaldo Cruz ; 113(9): e180212, 2018. tab, graf
Artigo em Inglês | LILACS | ID: biblio-955119

RESUMO

Biofilm formation is the preferred mode of growth lifestyle for many microorganisms, including bacterial and fungal human pathogens. Biofilm is a strong and dynamic structure that confers a broad range of advantages to its members, such as adhesion/cohesion capabilities, mechanical properties, nutritional sources, metabolite exchange platform, cellular communication, protection and resistance to drugs (e.g., antimicrobials, antiseptics, and disinfectants), environmental stresses (e.g., dehydration and ultraviolet light), host immune attacks (e.g., antibodies, complement system, antimicrobial peptides, and phagocytes), and shear forces. Microbial biofilms cause problems in the hospital environment, generating high healthcare costs and prolonged patient stay, which can result in further secondary microbial infections and various health complications. Consequently, both public and private investments must be made to ensure better patient management, as well as to find novel therapeutic strategies to circumvent the resistance and resilience profiles arising from biofilm-associated microbial infections. In this work, we present a general overview of microbial biofilm formation and its relevance within the biomedical context.


Assuntos
Biofilmes/crescimento & desenvolvimento , Fenômenos Fisiológicos Bacterianos , Fungos/fisiologia , Microbiologia Ambiental
2.
Mem. Inst. Oswaldo Cruz ; 113(6): e180102, 2018. tab, graf
Artigo em Inglês | LILACS | ID: biblio-955111

RESUMO

BACKGROUND Scedosporium/Lomentospora species are opportunistic mould pathogens, presenting notable antifungal resistance. OBJECTIVES/METHODS We analysed the conidia and germinated conidia of S. apiospermum (Sap), S. aurantiacum (Sau), S. minutisporum (Smi) and L. prolificans (Lpr) by scanning electron microscopy and exposition of surface molecules by fluorescence microscopy. FINDINGS Conidia of Sap, Smi and Sau had oval, ellipsoidal and cylindrical shape, respectively, with several irregularities surrounding all surface areas, whereas Lpr conidia were rounded with a smooth surface. The germination of Sap occurred at the conidial bottom, while Smi and Sau germination primarily occurred at the centre of the conidial cell, and Lpr germination initiated at any part of the conidial surface. The staining of N-acetylglucosamine-containing molecules by fluorescein-labelled WGA primarily occurred during the germination of all studied fungi and in the conidial scars, which is the primary location of germination. Calcofluor white, which recognises the polysaccharide chitin, strongly stained the conidial cells and, to a lesser extent, the germination. Both mannose-rich glycoconjugates (evidenced by fluoresceinated-ConA) and cell wall externally located polypeptides presented distinct surface locations and expression according to both morphotypes and fungal species. In contrast, sialic acid and galactose-containing structures were not detected at fungal surfaces. MAIN CONCLUSIONS The present study demonstrated the differential production/exposition of surface molecules on distinct morphotypes of Scedosporium/Lomentospora species.


Assuntos
Humanos , Esporos Fúngicos/fisiologia , Membrana Celular/ultraestrutura , Scedosporium/crescimento & desenvolvimento , Microscopia Eletrônica de Varredura , Diferenciação Celular , Microscopia de Fluorescência
3.
Mem. Inst. Oswaldo Cruz ; 111(7): 484-494, tab, graf
Artigo em Inglês | LILACS | ID: lil-787561

RESUMO

In the present study, we have investigated some growth conditions capable of inducing the conidial germination in Scedosporium apiospermum, S. aurantiacum, S. minutisporum and Lomentospora prolificans. Germination in Sabouraud medium (pH 7.0, 37ºC, 5% CO2) showed to be a typically time-dependent event, reaching ~75% in S. minutisporum and > 90% in S. apiospermum, S. aurantiacum and L. prolificans after 4 h. Similar germination rate was observed when conidia were incubated under different media and pHs. Contrarily, temperature and CO2 tension modulated the germination. The isotropic conidial growth (swelling) and germ tube-like projection were evidenced by microscopy and cytometry. Morphometric parameters augmented in a time-dependent fashion, evidencing changes in size and granularity of fungal cells compared with dormant 0 h conidia. In parallel, a clear increase in the mitochondrial activity was measured during the transformation of conidia-into-germinated conidia. Susceptibility profiles to itraconazole, fluconazole, voriconazole, amphotericin B and caspofungin varied regarding each morphotype and each fungal species. Overall, the minimal inhibitory concentrations for hyphae were higher than conidia and germinated conidia, except for caspofungin. Collectively, our study add new data about the conidia-into-hyphae transformation in Scedosporium and Lomentospora species, which is a relevant biological process of these molds directly connected to their antifungal resistance and pathogenicity mechanisms.


Assuntos
Antifúngicos/farmacologia , Scedosporium/efeitos dos fármacos , Esporos Fúngicos/efeitos dos fármacos , Meios de Cultura/química , Testes de Sensibilidade Microbiana , Scedosporium/crescimento & desenvolvimento , Scedosporium/fisiologia , Esporos Fúngicos/crescimento & desenvolvimento , Esporos Fúngicos/fisiologia , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA