Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Adicionar filtros








Intervalo de ano
1.
Chinese Journal of Tissue Engineering Research ; (53): 54-60, 2015.
Artigo em Chinês | WPRIM | ID: wpr-460977

RESUMO

BACKGROUND:The articular cartilage has weak self-repair ability, mainly due to its lack of trophoblast cels in blood vessels and slow cel metabolism. Current treatment methods cannot restore the original function of the cartilage tissue, and cartilage tissue engineering in recent years has garnered increasing attention. OBJECTIVE:To observe the effect of adipose-derived stem cels transfected with bone morphogenetic protein 14 combined with type I colagen sponge scaffold on the repair of articular cartilage injury in the knee of rabbits. METHODS: Adipose-derived stem cels were isolated and cultured from rabbit subcutaneous adipose tissue, and transfected with Ad-CMV-BMP-14-IRES-hrGFP-1. Type I colagen sponge scaffold with the transfected adipose-derived stem cels was used to repair articular cartilage injury in the knee of rabbits. Twelve weeks after operation, the articular tissue was taken for gross assessment and histological evaluation. RESULTS AND CONCLUSION: The expressions of bone morphogenetic protein 14, type II colagen and Sox-9 were higher in cels transfected with bone morphogenetic protein 14 than untransfected ones. At 12 weeks after operation, adipose-derived stem cels transfected with bone morphogenetic protein 14 combined with type I colagen sponge scaffold had good repair effect on articular cartilage injuries, and the injured cartilage tissues were smooth and had good texture, color and integration junction; adipose-derived stem cels combined with type I colagen sponge scaffold could partialy repair the injured cartilage tissues that had similar color and texture to normal tissues, and there was a remarkable boundary between the repaired tissue and normal cartilage tissue;simple type I colagen sponge scaffold was almost colapsed, and no hyaline cartilage tissue formed. These findings indicate that transfection of bone morphogenetic protein 14 can strengthen the ability of adipose-derived stem cels dramaticaly to repair cartilage injuries.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA