Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Adicionar filtros








Intervalo de ano
1.
Artigo em Inglês | IMSEAR | ID: sea-180381

RESUMO

In Egypt, the world’s biggest wheat importer, about 7 to 10 percent of stored grains are damaged because of poor conditions of storage. Rodent invasion is considered as one of the main reasons that caused wheat grain damage. With respect of food safety, this work aims to treat the grain burlaps (containers) to rodent repellent. The rodent repellent agents was extracted from natural local resources. For the rodent repellent effectiveness, wheat burlaps are treated with rodent repelling agents using eco-friendly components. There are prepared using camphor oil, mint oil, and capsaicinoids (extracted from hot red pepper) as local resources to develop low cost and high-performance final product. The plan of work relies on two main axes; first, the experimental part in which burlap was treated for rodent repellent; second, testing and characterizing the treated samples for cytotoxicity and animal behavior test. The treatment was taking place by conventional pad-dry-cure technique.

2.
Artigo em Inglês | IMSEAR | ID: sea-180336

RESUMO

Systematic application of topical drugs has been widely prescribed as an effective treatment for skin disorders. However, the widespread use of such topical drugs is also associated with emergence of resistant strains of microorganisms resulting in patients resist for one or more antibiotics. Nicotinamide, a water-soluble amide of nicotinic acid and a common topical drug, is approved as anti-acne drug with anti-inflammatory potentials. Encapsulation of nicotinamide into electrospun water-soluble matrix that chemically crosslinked is the approach to control its release. In this research, biocompatible nano-fibrous mat was developed with hydroxyethyl cellulose (HEC) blended with poly(vinyl alcohol) (PVA) by electro-spinning technique. The concentration of HEC (5% w/v) with PVA (10% w/v) was optimized, blended in different ratios (20–50% HEC concentration) and electro-spun to get smooth nano-fibers. Nicotinamide was successfully encapsulated in the electro-spun fibers. Nicotinamide release was controlled via chemical cross-linking of the produced mat. Selected parameters of spinning solutions (viscosity and conductivity) and process parameters (applied voltage and needle-to-collector distance) were studied. The microstructure, morphology of blended HEC/PVA, nicotinamide -loaded nano-fiber, cross-linked HEC/PVA nano-fibrous scaffolds were characterized by scanning electron microscope (SEM), Fourier transform infrared spectroscopy (FTIR). SEM images showed that the mean diameters of blend nano-fibers were ranged from 80 to 60 nm. The release profile of the nicotinamide was demonstrated. Release profile of the uncrosslinked and crosslinked mats were demonstred. Immortalized human skin fibroblasts cells were used to examine the biocompatibility of the produced HEC/PVA/ nicotinamide electrospun mats.

3.
Artigo em Inglês | IMSEAR | ID: sea-176858

RESUMO

Controlled-drug-releasing materials show promising applications in medicinal bandages. In addition, one could incorporate drugs to make such bandages more versatile. During this context, silica microparticles were synthesized, during presence of different drugs namely sodium diclofenac, linoleic acid and recienoleic acid. The morphological characterization shows formation of monodispersed, silica microparticles. FT-IR spectroscopy provided the interaction of the drug molecule at its hydroxide (OH) site with oxygen ions on the silica surface. UV–vis spectroscopy showed persistence of the different drugs signature, especially its R group, confirming its antimicrobial activity even after conjugation. Using zone-of-inhibition studies, the antimicrobial studies were done on two microorganisms, namely, Staphylococcus aureus and Escherichia coli. However, the encapsulator module showed controlled release of all drugs for the duration of 48 h. This work demonstrated an effective protocol to prepare antimicrobial patches for controlled drug delivery.

4.
Artigo em Inglês | IMSEAR | ID: sea-159203

RESUMO

The objective of the current paper was to prepare and evaluate various polymeric films for fungal infection treatment and its impact on volunteer patients. Different Eudragit polymeric films containing Ketoconazole as antifungal drug were prepared by solvent casting technique. The prepared films were tested for their physicomechanical properties as tensile strength, physical endurance, elasticity, water vapor permeation and water loss. The release of ketoconazole from the prepared medicated films was examined. It is involved 20 volunteers suffering from legs fungal infection. Ten of the patients used the films and a follow up study was carried out for 14 days, in comparison with other patients who applied ketoconazole medicated ointment, cream gel and Emulgel. The results revealed that films prepared with Eudragit RL 100 containing glyceryl triacetate produced maximum release of ketoconazole both In vitro and In vivo as compared with other topical dosage forms as ointment, cream, gel and Emulgel. Moreover, the films constitute a simple and convenient method for treatment of various fungal infections. As conclusion, the use of antifungal drugs such as Ketoconazole incorporated in polymeric films, the output results provided promised evidence in the treatment of dermatophytosis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA