Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Adicionar filtros








Intervalo de ano
1.
Rev. bras. farmacogn ; 28(5): 594-601, Sept.-Oct. 2018. tab, graf
Artigo em Inglês | LILACS | ID: biblio-977737

RESUMO

Abstract In this study, mango seed kernels extract contained a considerable amount of phenolics and flavonoids (17,400 and 3325 mg/100 g seed, respectively). The HPLC profiling revealed that hesperidin was the major phenolic compound of the mango seed kernels extract. This is the first report find hesperidin in mango extracts. The phenolic compounds of mango seed kernels extract were effective in scavenging free radicals of DPPH and ABTS with IC50 values of 47.3 and 7.9 µg/ml, respectively. The total antioxidant activity of mango seed kernels extract based on the reduction of molybdenum was also measured. The phenolic compounds of mango seed kernels extract potentially inhibited the protease, fibrinogenase, phospholipase A2, l-amino acid oxidase, hyaluronidase, and hemolytic activities of the most dangerous Cerastes cerastes and Echis coloratus viper venoms. The phenolic compounds of mango seed kernels extract could completely neutralize the hemorrhage and lethality of both venoms in experimental animals. It could be concluded that the mango seed kernels extract phenolic compounds with potential antioxidant activity are considered as a new avenue in the viper bite treatment.

2.
Electron. j. biotechnol ; 27: 84-90, May. 2017. graf, ilus, tab
Artigo em Inglês | LILACS | ID: biblio-1010412

RESUMO

Background: Iron magnetic nanoparticles have attracted much attention. They have been used in enzyme immobilization because of their properties such as product is easily separated from the medium by magnetic separation. The present work was designed to immobilize horseradish peroxidase on Fe3O4 magnetic nanopraticles without modification. Results: In the present study, horseradish peroxidase (HRP) was immobilized on non-modified Fe3O4 magnetic nanoparticles. The immobilized HRP was characterized by FT-IR spectroscopy, scanning electron microscopy, and energy dispersive X-ray. In addition, it retained 55% of its initial activity after 10 reuses. The optimal pH shifted from 7.0 for soluble HRP to 7.5 for the immobilized HRP, and the optimal temperature shifted from 40°C to 50°C. The immobilized HRP is more thermostable than soluble HRP. Various substrates were oxidized by the immobilized HRP with higher efficiencies than by soluble HRP. Km values of the soluble and immobilized HRP were 31 and 45 mM for guaiacol and 5.0 and 7.0 mM for H2O2, respectively. The effect of metals on soluble and immobilized HRP was studied. Moreover, the immobilized HRP was more stable against high concentrations of urea, Triton X-100, and isopropanol. Conclusions: Physical immobilization of HRP on iron magnetic nanoparticles improved the stability toward the denaturation induced by pH, heat, metal ions, urea, detergent, and water-miscible organic solvent.


Assuntos
Enzimas Imobilizadas/química , Óxido Ferroso-Férrico/química , Peroxidase do Rábano Silvestre/química , Solubilidade , Espectrometria por Raios X , Temperatura , Microscopia Eletrônica de Varredura , Espectroscopia de Infravermelho com Transformada de Fourier , Enzimas Imobilizadas/metabolismo , Nanopartículas/química , Peroxidase do Rábano Silvestre/metabolismo , Concentração de Íons de Hidrogênio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA