Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Adicionar filtros








Intervalo de ano
1.
Acta Pharmaceutica Sinica ; (12): 3090-3098, 2023.
Artigo em Chinês | WPRIM | ID: wpr-999053

RESUMO

Sophorae Flavescentis Radix is the dried root of Sophora flavescens Ait. and Sophorae Tonkinensis Radix et Rhizoma is the dried root and rhizome of Sophora tonkinensis Gagnep. The two drugs are both from the same genus Sophora, having similar and different compositions and efficacies, however, their differences are not fully demonstrated in current standard. In this study, the high-performance thin-layer chromatography with multi-dimensional and multi-level features combined with electric spray mass spectrometry (HPTLC-ESI-MS) was used to discover and identify the characteristic zones in extracts of Sophorae Flavescentis Radix and Sophorae Tonkinensis Radix et Rhizoma, after optimizing the preparation method of the test solution and chromatographic parameters. As a result, 17 main characteristic zones were found on HPTLC chromatograms of Sophorae Flavescentis Radix and Sophorae Tonkinensis Radix et Rhizoma, among them, besides 3 known chemicals, another 12 unknown components were identified by HPTLC-ESI-MS, they are 1 alkaloid and 11 flavonoids. The identification results were verified by the reference standards partially and nuclear magnetic resonance spectra after guided-isolation. Finally, a unified HPTLC specific identification method with different markers was established to identify Sophorae Flavescentis Radix and Sophorae Tonkinensis Radix et Rhizoma simultaneously. Thanks to abundant chemical information provided when using diverse polarity mobile phases and derivatization reagents, the HPTLC technology offers a convenient strategy for discovery, quality evaluation, and identification of target chemicals when connecting with mass spectrometry.

2.
Acta Pharmaceutica Sinica ; (12): 1868-1873, 2022.
Artigo em Chinês | WPRIM | ID: wpr-929434

RESUMO

Saponins and sterones are two main characteristic components in Achyranthis Bidentatae Radix. In order to control the quality of Achyranthis Bidentatae Radix more effectively, a high-performance liquid chromatography (HPLC) method was established by using double external standards calibration method (DESCM) for simultaneous determination of the contents of achyranthoside C, achyranthoside D, β-ecdysterone, 25R-inokosterone and 25S-inokosterone in Achyranthis Bidentatae Radix. Chromatographic separation was achieved on an Agilent Poroshell 120 EC-C18 (150 mm × 4.6 mm, 2.7 µm) using 0.1% phosphoric acid in water and 0.1% phosphoric acid in acetonitrile as mobile phase. The flow rate was 0.8 mL·min-1 and the column temperature was set as 35 ℃, the injection volume was 5 μL and the total analytical time was 30 min. β-Ecdysterone was used as the reference to calculate the relative correction factors (RCF) and relative retention time (RRT) of 25R-inokosterone and 25S-inokosterone, achyranthoside D was used for achyranthoside C. The RCFs of 25R-inokosterone, 25S-inokosterone, and achyranthoside C were 1.116, 1.056, and 0.888 1, respectively. The double external standards calibration method (DESCM) and external standard method (ESM) were used to calculate the contents of five ingredients in Achyranthis Bidentatae Radix samples from different sources and the variation between the results was within acceptable limits (RE ≤ 5%). The results showed that the contents of two saponins and three sterones of Achyranthis Bidentatae Radix were 0.597%-1.916% and 0.044%-0.150% respectively. The total content of saponins was about 10 times that of sterones. In conclusion, the established DESCM allowed simultaneous determination of five ingredients (achyranthoside C, achyranthoside D, β-ecdysterone, 25R-inokosterone, and 25S-inokosterone) in Achyranthis Bidentatae Radix, providing a scientific and feasible overall quality evaluation method for Achyranthis Bidentatae Radix.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA