Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Adicionar filtros








Intervalo de ano
1.
Protein & Cell ; (12): 279-293, 2023.
Artigo em Inglês | WPRIM | ID: wpr-982546

RESUMO

Aging poses a major risk factor for cardiovascular diseases, the leading cause of death in the aged population. However, the cell type-specific changes underlying cardiac aging are far from being clear. Here, we performed single-nucleus RNA-sequencing analysis of left ventricles from young and aged cynomolgus monkeys to define cell composition changes and transcriptomic alterations across different cell types associated with age. We found that aged cardiomyocytes underwent a dramatic loss in cell numbers and profound fluctuations in transcriptional profiles. Via transcription regulatory network analysis, we identified FOXP1, a core transcription factor in organ development, as a key downregulated factor in aged cardiomyocytes, concomitant with the dysregulation of FOXP1 target genes associated with heart function and cardiac diseases. Consistently, the deficiency of FOXP1 led to hypertrophic and senescent phenotypes in human embryonic stem cell-derived cardiomyocytes. Altogether, our findings depict the cellular and molecular landscape of ventricular aging at the single-cell resolution, and identify drivers for primate cardiac aging and potential targets for intervention against cardiac aging and associated diseases.


Assuntos
Idoso , Animais , Humanos , Envelhecimento/genética , Fatores de Transcrição Forkhead/metabolismo , Miócitos Cardíacos/metabolismo , Primatas/metabolismo , Proteínas Repressoras/metabolismo , Transcriptoma , Macaca fascicularis/metabolismo
2.
Protein & Cell ; (12): 202-216, 2023.
Artigo em Inglês | WPRIM | ID: wpr-982531

RESUMO

Although the mTOR-4E-BP1 signaling pathway is implicated in aging and aging-related disorders, the role of 4E-BP1 in regulating human stem cell homeostasis remains largely unknown. Here, we report that the expression of 4E-BP1 decreases along with the senescence of human mesenchymal stem cells (hMSCs). Genetic inactivation of 4E-BP1 in hMSCs compromises mitochondrial respiration, increases mitochondrial reactive oxygen species (ROS) production, and accelerates cellular senescence. Mechanistically, the absence of 4E-BP1 destabilizes proteins in mitochondrial respiration complexes, especially several key subunits of complex III including UQCRC2. Ectopic expression of 4E-BP1 attenuates mitochondrial abnormalities and alleviates cellular senescence in 4E-BP1-deficient hMSCs as well as in physiologically aged hMSCs. These f indings together demonstrate that 4E-BP1 functions as a geroprotector to mitigate human stem cell senescence and maintain mitochondrial homeostasis, particularly for the mitochondrial respiration complex III, thus providing a new potential target to counteract human stem cell senescence.


Assuntos
Humanos , Células-Tronco Mesenquimais/fisiologia , Senescência Celular , Homeostase , Proteínas de Ciclo Celular/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Mitocôndrias/metabolismo , Complexo III da Cadeia de Transporte de Elétrons/metabolismo , Células Cultivadas
3.
Protein & Cell ; (12): 483-504, 2020.
Artigo em Inglês | WPRIM | ID: wpr-828752

RESUMO

SIRT7, a sirtuin family member implicated in aging and disease, is a regulator of metabolism and stress responses. It remains elusive how human somatic stem cell populations might be impacted by SIRT7. Here, we found that SIRT7 expression declines during human mesenchymal stem cell (hMSC) aging and that SIRT7 deficiency accelerates senescence. Mechanistically, SIRT7 forms a complex with nuclear lamina proteins and heterochromatin proteins, thus maintaining the repressive state of heterochromatin at nuclear periphery. Accordingly, deficiency of SIRT7 results in loss of heterochromatin, de-repression of the LINE1 retrotransposon (LINE1), and activation of innate immune signaling via the cGAS-STING pathway. These aging-associated cellular defects were reversed by overexpression of heterochromatin proteins or treatment with a LINE1 targeted reverse-transcriptase inhibitor. Together, these findings highlight how SIRT7 safeguards chromatin architecture to control innate immune regulation and ensure geroprotection during stem cell aging.

4.
Protein & Cell ; (12): 740-770, 2020.
Artigo em Inglês | WPRIM | ID: wpr-828746

RESUMO

Age-associated changes in immune cells have been linked to an increased risk for infection. However, a global and detailed characterization of the changes that human circulating immune cells undergo with age is lacking. Here, we combined scRNA-seq, mass cytometry and scATAC-seq to compare immune cell types in peripheral blood collected from young and old subjects and patients with COVID-19. We found that the immune cell landscape was reprogrammed with age and was characterized by T cell polarization from naive and memory cells to effector, cytotoxic, exhausted and regulatory cells, along with increased late natural killer cells, age-associated B cells, inflammatory monocytes and age-associated dendritic cells. In addition, the expression of genes, which were implicated in coronavirus susceptibility, was upregulated in a cell subtype-specific manner with age. Notably, COVID-19 promoted age-induced immune cell polarization and gene expression related to inflammation and cellular senescence. Therefore, these findings suggest that a dysregulated immune system and increased gene expression associated with SARS-CoV-2 susceptibility may at least partially account for COVID-19 vulnerability in the elderly.


Assuntos
Adulto , Idoso , Idoso de 80 Anos ou mais , Humanos , Pessoa de Meia-Idade , Adulto Jovem , Envelhecimento , Genética , Alergia e Imunologia , Betacoronavirus , Linfócitos T CD4-Positivos , Metabolismo , Linhagem da Célula , Montagem e Desmontagem da Cromatina , Infecções por Coronavirus , Alergia e Imunologia , Síndrome da Liberação de Citocina , Alergia e Imunologia , Citocinas , Genética , Suscetibilidade a Doenças , Citometria de Fluxo , Métodos , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Rearranjo Gênico , Sistema Imunitário , Biologia Celular , Alergia e Imunologia , Imunocompetência , Genética , Inflamação , Genética , Alergia e Imunologia , Espectrometria de Massas , Métodos , Pandemias , Pneumonia Viral , Alergia e Imunologia , Análise de Sequência de RNA , Análise de Célula Única , Transcriptoma
5.
Protein & Cell ; (12): 483-504, 2020.
Artigo em Inglês | WPRIM | ID: wpr-828588

RESUMO

SIRT7, a sirtuin family member implicated in aging and disease, is a regulator of metabolism and stress responses. It remains elusive how human somatic stem cell populations might be impacted by SIRT7. Here, we found that SIRT7 expression declines during human mesenchymal stem cell (hMSC) aging and that SIRT7 deficiency accelerates senescence. Mechanistically, SIRT7 forms a complex with nuclear lamina proteins and heterochromatin proteins, thus maintaining the repressive state of heterochromatin at nuclear periphery. Accordingly, deficiency of SIRT7 results in loss of heterochromatin, de-repression of the LINE1 retrotransposon (LINE1), and activation of innate immune signaling via the cGAS-STING pathway. These aging-associated cellular defects were reversed by overexpression of heterochromatin proteins or treatment with a LINE1 targeted reverse-transcriptase inhibitor. Together, these findings highlight how SIRT7 safeguards chromatin architecture to control innate immune regulation and ensure geroprotection during stem cell aging.

6.
Protein & Cell ; (12): 740-770, 2020.
Artigo em Inglês | WPRIM | ID: wpr-828582

RESUMO

Age-associated changes in immune cells have been linked to an increased risk for infection. However, a global and detailed characterization of the changes that human circulating immune cells undergo with age is lacking. Here, we combined scRNA-seq, mass cytometry and scATAC-seq to compare immune cell types in peripheral blood collected from young and old subjects and patients with COVID-19. We found that the immune cell landscape was reprogrammed with age and was characterized by T cell polarization from naive and memory cells to effector, cytotoxic, exhausted and regulatory cells, along with increased late natural killer cells, age-associated B cells, inflammatory monocytes and age-associated dendritic cells. In addition, the expression of genes, which were implicated in coronavirus susceptibility, was upregulated in a cell subtype-specific manner with age. Notably, COVID-19 promoted age-induced immune cell polarization and gene expression related to inflammation and cellular senescence. Therefore, these findings suggest that a dysregulated immune system and increased gene expression associated with SARS-CoV-2 susceptibility may at least partially account for COVID-19 vulnerability in the elderly.


Assuntos
Adulto , Idoso , Idoso de 80 Anos ou mais , Humanos , Pessoa de Meia-Idade , Adulto Jovem , Envelhecimento , Genética , Alergia e Imunologia , Betacoronavirus , Linfócitos T CD4-Positivos , Metabolismo , Linhagem da Célula , Montagem e Desmontagem da Cromatina , Infecções por Coronavirus , Alergia e Imunologia , Síndrome da Liberação de Citocina , Alergia e Imunologia , Citocinas , Genética , Suscetibilidade a Doenças , Citometria de Fluxo , Métodos , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Rearranjo Gênico , Sistema Imunitário , Biologia Celular , Alergia e Imunologia , Imunocompetência , Genética , Inflamação , Genética , Alergia e Imunologia , Espectrometria de Massas , Métodos , Pandemias , Pneumonia Viral , Alergia e Imunologia , Análise de Sequência de RNA , Análise de Célula Única , Transcriptoma
7.
Protein & Cell ; (12): 740-770, 2020.
Artigo em Inglês | WPRIM | ID: wpr-827016

RESUMO

Age-associated changes in immune cells have been linked to an increased risk for infection. However, a global and detailed characterization of the changes that human circulating immune cells undergo with age is lacking. Here, we combined scRNA-seq, mass cytometry and scATAC-seq to compare immune cell types in peripheral blood collected from young and old subjects and patients with COVID-19. We found that the immune cell landscape was reprogrammed with age and was characterized by T cell polarization from naive and memory cells to effector, cytotoxic, exhausted and regulatory cells, along with increased late natural killer cells, age-associated B cells, inflammatory monocytes and age-associated dendritic cells. In addition, the expression of genes, which were implicated in coronavirus susceptibility, was upregulated in a cell subtype-specific manner with age. Notably, COVID-19 promoted age-induced immune cell polarization and gene expression related to inflammation and cellular senescence. Therefore, these findings suggest that a dysregulated immune system and increased gene expression associated with SARS-CoV-2 susceptibility may at least partially account for COVID-19 vulnerability in the elderly.


Assuntos
Adulto , Idoso , Idoso de 80 Anos ou mais , Humanos , Pessoa de Meia-Idade , Adulto Jovem , Envelhecimento , Genética , Alergia e Imunologia , Betacoronavirus , Linfócitos T CD4-Positivos , Metabolismo , Linhagem da Célula , Montagem e Desmontagem da Cromatina , Infecções por Coronavirus , Alergia e Imunologia , Síndrome da Liberação de Citocina , Alergia e Imunologia , Citocinas , Genética , Suscetibilidade a Doenças , Citometria de Fluxo , Métodos , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Rearranjo Gênico , Sistema Imunitário , Biologia Celular , Alergia e Imunologia , Imunocompetência , Genética , Inflamação , Genética , Alergia e Imunologia , Espectrometria de Massas , Métodos , Pandemias , Pneumonia Viral , Alergia e Imunologia , Análise de Sequência de RNA , Análise de Célula Única , Transcriptoma
8.
Protein & Cell ; (12): 417-435, 2019.
Artigo em Inglês | WPRIM | ID: wpr-757930

RESUMO

Aging increases the risk of various diseases. The main goal of aging research is to find therapies that attenuate aging and alleviate aging-related diseases. In this study, we screened a natural product library for geroprotective compounds using Werner syndrome (WS) human mesenchymal stem cells (hMSCs), a premature aging model that we recently established. Ten candidate compounds were identified and quercetin was investigated in detail due to its leading effects. Mechanistic studies revealed that quercetin alleviated senescence via the enhancement of cell proliferation and restoration of heterochromatin architecture in WS hMSCs. RNA-sequencing analysis revealed the transcriptional commonalities and differences in the geroprotective effects by quercetin and Vitamin C. Besides WS hMSCs, quercetin also attenuated cellular senescence in Hutchinson-Gilford progeria syndrome (HGPS) and physiological-aging hMSCs. Taken together, our study identifies quercetin as a geroprotective agent against accelerated and natural aging in hMSCs, providing a potential therapeutic intervention for treating age-associated disorders.

9.
Protein & Cell ; (12): 249-271, 2019.
Artigo em Inglês | WPRIM | ID: wpr-757893

RESUMO

Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is a rare hereditary cerebrovascular disease caused by a NOTCH3 mutation. However, the underlying cellular and molecular mechanisms remain unidentified. Here, we generated non-integrative induced pluripotent stem cells (iPSCs) from fibroblasts of a CADASIL patient harboring a heterozygous NOTCH3 mutation (c.3226C>T, p.R1076C). Vascular smooth muscle cells (VSMCs) differentiated from CADASIL-specific iPSCs showed gene expression changes associated with disease phenotypes, including activation of the NOTCH and NF-κB signaling pathway, cytoskeleton disorganization, and excessive cell proliferation. In comparison, these abnormalities were not observed in vascular endothelial cells (VECs) derived from the patient's iPSCs. Importantly, the abnormal upregulation of NF-κB target genes in CADASIL VSMCs was diminished by a NOTCH pathway inhibitor, providing a potential therapeutic strategy for CADASIL. Overall, using this iPSC-based disease model, our study identified clues for studying the pathogenic mechanisms of CADASIL and developing treatment strategies for this disease.

10.
Protein & Cell ; (12): 649-667, 2019.
Artigo em Inglês | WPRIM | ID: wpr-757890

RESUMO

RAP1 is a well-known telomere-binding protein, but its functions in human stem cells have remained unclear. Here we generated RAP1-deficient human embryonic stem cells (hESCs) by using CRISPR/Cas9 technique and obtained RAP1-deficient human mesenchymal stem cells (hMSCs) and neural stem cells (hNSCs) via directed differentiation. In both hMSCs and hNSCs, RAP1 not only negatively regulated telomere length but also acted as a transcriptional regulator of RELN by tuning the methylation status of its gene promoter. RAP1 deficiency enhanced self-renewal and delayed senescence in hMSCs, but not in hNSCs, suggesting complicated lineage-specific effects of RAP1 in adult stem cells. Altogether, these results demonstrate for the first time that RAP1 plays both telomeric and nontelomeric roles in regulating human stem cell homeostasis.

11.
Protein & Cell ; (12): 333-350, 2018.
Artigo em Inglês | WPRIM | ID: wpr-757991

RESUMO

Hutchinson-Gilford progeria syndrome (HGPS) and Werner syndrome (WS) are two of the best characterized human progeroid syndromes. HGPS is caused by a point mutation in lamin A (LMNA) gene, resulting in the production of a truncated protein product-progerin. WS is caused by mutations in WRN gene, encoding a loss-of-function RecQ DNA helicase. Here, by gene editing we created isogenic human embryonic stem cells (ESCs) with heterozygous (G608G/+) or homozygous (G608G/G608G) LMNA mutation and biallelic WRN knockout, for modeling HGPS and WS pathogenesis, respectively. While ESCs and endothelial cells (ECs) did not present any features of premature senescence, HGPS- and WS-mesenchymal stem cells (MSCs) showed aging-associated phenotypes with different kinetics. WS-MSCs had early-onset mild premature aging phenotypes while HGPS-MSCs exhibited late-onset acute premature aging characterisitcs. Taken together, our study compares and contrasts the distinct pathologies underpinning the two premature aging disorders, and provides reliable stem-cell based models to identify new therapeutic strategies for pathological and physiological aging.


Assuntos
Humanos , Envelhecimento , Genética , Fisiologia , DNA Helicases , Genética , Células-Tronco Embrionárias Humanas , Metabolismo , Fisiologia , Cinética , Lamina Tipo A , Genética , Células-Tronco Mesenquimais , Metabolismo , Fisiologia , Mutação , Progéria , Genética , Síndrome de Werner , Genética
12.
Protein & Cell ; (12): 945-965, 2018.
Artigo em Inglês | WPRIM | ID: wpr-757939

RESUMO

Vascular cell functionality is critical to blood vessel homeostasis. Constitutive NF-κB activation in vascular cells results in chronic vascular inflammation, leading to various cardiovascular diseases. However, how NF-κB regulates human blood vessel homeostasis remains largely elusive. Here, using CRISPR/Cas9-mediated gene editing, we generated RelA knockout human embryonic stem cells (hESCs) and differentiated them into various vascular cell derivatives to study how NF-κB modulates human vascular cells under basal and inflammatory conditions. Multi-dimensional phenotypic assessments and transcriptomic analyses revealed that RelA deficiency affected vascular cells via modulating inflammation, survival, vasculogenesis, cell differentiation and extracellular matrix organization in a cell type-specific manner under basal condition, and that RelA protected vascular cells against apoptosis and modulated vascular inflammatory response upon tumor necrosis factor α (TNFα) stimulation. Lastly, further evaluation of gene expression patterns in IκBα knockout vascular cells demonstrated that IκBα acted largely independent of RelA signaling. Taken together, our data reveal a protective role of NF-κB/RelA in modulating human blood vessel homeostasis and map the human vascular transcriptomic landscapes for the discovery of novel therapeutic targets.


Assuntos
Humanos , Vasos Sanguíneos , Biologia Celular , Metabolismo , Sistemas CRISPR-Cas , Células-Tronco Embrionárias , Biologia Celular , Técnicas de Inativação de Genes , Homeostase , NF-kappa B , Metabolismo , Fator de Transcrição RelA , Metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA