Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Adicionar filtros








Intervalo de ano
2.
Korean Journal of Veterinary Research ; : 1-7, 2017.
Artigo em Inglês | WPRIM | ID: wpr-91214

RESUMO

Parkinson's disease (PD) is an irreversible neurological disorder with related locomotor dysfunction and is haracterized by the selective loss of nigral neurons. PD can be experimentally induced by 6-hydroxydopamine (6-OHDA). It has been reported that reactive oxygen species, which deplete endogenous glutathione (GSH) levels, may play important roles in the dopaminergic cell death characteristic of PD. Fucoidan, a sulfated algal polysaccharide, exhibits anti-inflammatory and anti-oxidant actions. In this study, we investigated whether fucoidan can protect against 6-OHDA-mediated cytotoxicity in SH-SY5Y cells. Cytotoxicity was evaluated by using MTT and LDH assays. Fucoidan alleviated cell damage evoked by 6-OHDA dose-dependently. Fucoidan reduced the number of apoptotic nuclei and the extent of annexin-V-associated apoptosis, as revealed by DAPI staining and flow cytometry. Elevation of lipid peroxidation and caspase-3/7 activities induced by 6-OHDA was attenuated by fucoidan, which also protected against cytotoxicity evoked by buthionine-sulfoximine-mediated GSH depletion. Reduction in the glutathione/glutathione disulfide ratio induced by 6-OHDA was reversed by fucoidan, which also inhibited 6-OHDA-induced disruption of mitochondrial membrane potential. The results indicate that fucoidan may have protective action against 6-OHDA-mediated neurotoxicity by modulating oxidative injury and apoptosis through GSH depletion.


Assuntos
Apoptose , Morte Celular , Citometria de Fluxo , Glutationa , Peroxidação de Lipídeos , Potencial da Membrana Mitocondrial , Doenças do Sistema Nervoso , Neurônios , Oxidopamina , Doença de Parkinson , Espécies Reativas de Oxigênio
3.
Korean Journal of Veterinary Research ; : 1-6, 2014.
Artigo em Coreano | WPRIM | ID: wpr-65258

RESUMO

Parkinson's disease is known to exhibit progressive degeneration of the dopaminergic neurons in the substantia nigra via inhibition of glutathione metabolism. It is well known that 6-Hydroxydopamine (6-OHDA) induces Parkinson's disease-like symptoms, while resveratrol (3,5,4'-trihydroxystilbene) has been shown to have anti-inflammatory and antioxidant effects. In the present study, we investigated the neuroprotective effects of resveratrol, a phytoalexin found in grapes and various plants, on 6-OHDA-induced cell damage to the SH-SY5Y human neuroblastoma cell line. Resveratrol (5 and 10 microM) inhibited 6-OHDA (60 microM)-induced cytotoxicity in SH-SY5Y cells and induced a reduction of the number of apoptotic nuclei caused by 6-OHDA treatment. Additionally, the total apoptotic rate of cells treated with both resveratrol (10 microM) and 6-OHDA (60 microM) was less than that of 6-OHDA treated cells. Resveratrol also dose-dependently (1, 5 and 10 microM) scavenged reactive oxygen species (ROS) induced by 6-OHDA in SH-SY5Y cells and prevented depletion of glutathione in response to the 6-OHDA-induced cytotoxicity in the glutathione assay. Overall, these results indicate that resveratrol exerts a neuroprotective effect against 6-OHDA-induced cytotoxicity of SH-SY5Y cells by scavenging ROS and preserving glutathione.


Assuntos
Humanos , Antioxidantes , Apoptose , Linhagem Celular , Neurônios Dopaminérgicos , Glutationa , Metabolismo , Neuroblastoma , Fármacos Neuroprotetores , Oxidopamina , Doença de Parkinson , Espécies Reativas de Oxigênio , Substância Negra , Vitis
4.
Laboratory Animal Research ; : 259-263, 2011.
Artigo em Inglês | WPRIM | ID: wpr-95397

RESUMO

Recently, loss of endogenous glutathione during N-methyl-D-aspartate (NMDA) receptor-mediated excitotoxic injury, and the resultant overproduction of reactive oxygen species (ROS) through an arachidonic acid cascade process in brain, have been implicated in neuronal damage in various neurodegenerative diseases. Glutathione depletion induced by L-buthionine-(S,R)-sulfoximine (BSO), an inhibitor of glutathione synthesis, is known to cause arachidonic acid-mediated excitotoxicity in primary mixed cortical cultures. The aim of this study was to investigate whether esculetin (6,7-dihydroxycoumarin), an inhibitor of lipoxygenase, protects against neurotoxicity induced by NMDA or BSO. We observed that neurotoxicity induced by NMDA but not kainic acid was attenuated by esculetin. At the same concentration (100 microM), esculetin attenuated the 45Ca2+ uptake elevation induced by NMDA. Free radical-mediated neuronal injury induced by H2O2 and xanthine/xanthine oxidase was concentration-dependently blocked by esculetin. Esculetin (1-30 microM) dose-dependently inhibited BSO-induced neuronal injury. In addition, arachidonate-induced neurotoxicity was completely blocked by esculetin. BSO also reduced glutathione peroxidase (GPx) activity, but did not change glutathione reductase (GR) activity 24 h after treatment. Esculetin dose-dependently increased GR activity, but did not alter GPx activity. These findings suggest that esculetin can contribute to the rescue of neuronal cells from NMDA neurotoxicity and that this protective effect occurs partly through NMDA receptor modulation and the sparing of glutathione depletion.


Assuntos
Ácido Araquidônico , Encéfalo , Glutationa , Glutationa Redutase , Ácido Caínico , Lipoxigenase , N-Metilaspartato , Doenças Neurodegenerativas , Neurônios , Oxirredutases , Peroxidase , Espécies Reativas de Oxigênio , Umbeliferonas
5.
Journal of Veterinary Science ; : 101-104, 2006.
Artigo em Inglês | WPRIM | ID: wpr-32321

RESUMO

The expression of caveolin-1 and -2 in the retina was examined; Western blot analysis showed that both were present. Immunohistochemistry indicated that caveolin-1 was expressed in the majority of retinal layers, including the ganglion cell layer, inner plexiform layer, outer plexiform layer, and in the vascular endothelial cells of the retina. Caveolin-2 was primarily immunostained in the vessels, but in a few other elements as well. This is the first demonstration of caveolin differential expression in the retina of rats, and suggests that caveolin plays an important role in signal transduction in glial cells and neuronal cells.


Assuntos
Animais , Masculino , Ratos , Caveolina 1/análise , Caveolina 2/análise , Regulação da Expressão Gênica , Imuno-Histoquímica , Ratos Sprague-Dawley , Retina/química
6.
Journal of Veterinary Science ; : 85-89, 2001.
Artigo em Inglês | WPRIM | ID: wpr-104748

RESUMO

Melatonin (N-acetyl-5-methoxytryptamine), a pineal neurohormone, is a hydroxyl radical scavenger and antioxidant, and plays an important role in the immune system. We studied the effect of exogenous melatonin on the pathogenesis of experimental autoimmune encephalomyelitis (EAE). EAE was induced in Lewis rats by immunization with rat spinal cord homogenates. Subsequent oral administration of melatonin at 5 mg/kg significantly reduced the clinical severity of EAE paralysis compared with administration of the vehicle alone (p<0.01). Infiltration of ED1 macrophages and CD4 T cells into spinal cords occurred both in the absence and presence of melatonin treatment, but melatonin-treated rats had less spinal cord infiltration of inflammatory cells than did the control group. ICAM-1 immunoreactivity in the blood vessels of EAE lesions was decreased in melatonin-treated rats compared to vehicle-treated rats. These findings suggest that exogenous melatonin ameliorates EAE via a mechanism involving reduced expression of ICAM-1 and lymphocyte function associated antigen-1a in autoimmune target organs.


Assuntos
Animais , Feminino , Masculino , Ratos , Encefalomielite Autoimune Experimental/imunologia , Imuno-Histoquímica , Molécula 1 de Adesão Intercelular/análise , Melatonina/administração & dosagem , Ratos Endogâmicos Lew , Medula Espinal/química
7.
Journal of Veterinary Science ; : 11-17, 2000.
Artigo em Inglês | WPRIM | ID: wpr-103276

RESUMO

To elucidate the role of nitric oxide synthase (NOS) in the pathogenesis of experimental autoimmune encephalomyelitis (EAE), we analyzed the expression of constitutive neuronal NOS (nNOS), endothelial NOS (eNOS), and inducible NOS (iNOS) in the spinal cords of rats with EAE. We further examined the structural interaction between apoptotic cells and spinal cord cells including neurons and astrocytes, which are potent cell types of nitric oxide (NO) production in the brain. Western blot analysis showed that three forms of NOS significantly increased in the spinal cords of rats at the peak stage of EAE, while small amounts of these enzymes were identified in the spinal cords of rats without EAE. Immunohistochemical study showed that the expression of either nNOS or eNOS increased in the brain cells including neurons and astrocytes during the peak and recovery stages of EAE, while the expression of iNOS was found mainly in the inflammatory macrophages in the perivascular EAE lesions. Double labeling showed that apoptotic cells had intimate contacts with either neurons or astrocytes, which are major cell types to express nNOS and eNOS constitutively. Our results suggest that the three NOS may play an important role in the recovery of EAE.


Assuntos
Animais , Masculino , Ratos , Apoptose , Encefalomielite Autoimune Experimental/enzimologia , Endotélio Vascular/enzimologia , Imuno-Histoquímica , Marcação In Situ das Extremidades Cortadas , Óxido Nítrico Sintase/metabolismo , Óxido Nítrico Sintase Tipo I , Óxido Nítrico Sintase Tipo II , Óxido Nítrico Sintase Tipo III , Ratos Endogâmicos Lew , Medula Espinal/enzimologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA